Sijia Chen
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sijia Chen.
Virus Research | 2012
Sijia Chen; Ying-Xin Zhao; Yong Fang; Wei-Zhen Xu; Yan-Xiu Ma; Zhi-Wei Song; Xu Teng; Hong-Xi Gu
To investigate the mechanism and prognosis of occult hepatitis B virus (HBV) infection (OBI) at a molecular level among healthy young adults, the presence of HBV DNA in 1176 sera samples collected from healthy young people after neonatal vaccination was assessed by nested polymerase chain reaction (PCR) using specific primers designed for the X and S regions of the HBV genome. Full-length HBV DNA from 9 patients with OBI (OB1-OB9) was cloned and sequenced. Deletions in the pre-S, basal core promoter (BCP), core (C) and polymerase (P) regions were observed. The data indicate that there is still a substantial risk of OBI in China despite neonatal vaccination. All deletions that were observed in the pre-S, BCP, C and P regions play a direct or indirect role in OBI. The presence of a deletion mutation in the pre-S1 region was considered to play a pivotal role in hepatocarcinogenesis and was found to increase the risk of hepatocellular carcinoma in the cohorts studied.
Journal of Clinical Microbiology | 2011
Qinglong Shang; Yan Wang; Yong Fang; Lanlan Wei; Sijia Chen; Yuhui Sun; Baoxin Li; Fengmin Zhang; Hong-Xi Gu
ABSTRACT Human papillomavirus type 16 (HPV 16) plays a cardinal role in the pathogenesis of cervical cancer. HPV 16 has intratypic variants which show different geographical distributions and different oncogenic potentials. To analyze the presence of sequence variations of HPV 16 variants in northeast China, 71 cervical carcinomas were identified by HPV typing. HPV 16-positive specimens were analyzed by PCR-directed sequencing in the E6, E7, and L1 genes and the LCR (long control region). The variation data were compared with those of neighboring districts. In this hospital-based study, HPV 16 was the most common type (73.24%). In HPV 16-positive specimens, 67.31% belonged to the European (E) lineage, while 32.69% were Asian (As) variants. The Asian-American (AA), African-1 (Af-1), African-2 (Af-2), and northern American (NA) lineages were not detected. The most frequently observed variation sites were T178G (32.69%) in E6; A647G (34.62%), G666A (38.46%), and T846C (32.69%) in E7; C6826T (36.17%) and G7060A (61.70%) in L1; and G7521A (98.08%) in the LCR. The most prevalent amino acid variations were D25E in E6 and N29S in E7. In addition, 28 novel variations of HPV 16 were reported. Some covariations between different genes were obtained. In this study, HPV 16 variants belonged to the European lineage and the Asian lineage. Compared with neighboring districts, the distribution of HPV 16 variants in northeast China had a typical pattern. As the first report on HPV 16 variants in northeast China, it should be helpful for designing a HPV vaccine and HPV vaccination program in China.
Journal of Clinical Microbiology | 2011
Qinglong Shang; Yan Wang; Yong Fang; Lanlan Wei; Sijia Chen; Yuhui Sun; Baoxin Li; Fengmin Zhang; Hong-Xi Gu
ABSTRACT Human papillomavirus type 16 (HPV 16) plays a cardinal role in the pathogenesis of cervical cancer. HPV 16 has intratypic variants which show different geographical distributions and different oncogenic potentials. To analyze the presence of sequence variations of HPV 16 variants in northeast China, 71 cervical carcinomas were identified by HPV typing. HPV 16-positive specimens were analyzed by PCR-directed sequencing in the E6, E7, and L1 genes and the LCR (long control region). The variation data were compared with those of neighboring districts. In this hospital-based study, HPV 16 was the most common type (73.24%). In HPV 16-positive specimens, 67.31% belonged to the European (E) lineage, while 32.69% were Asian (As) variants. The Asian-American (AA), African-1 (Af-1), African-2 (Af-2), and northern American (NA) lineages were not detected. The most frequently observed variation sites were T178G (32.69%) in E6; A647G (34.62%), G666A (38.46%), and T846C (32.69%) in E7; C6826T (36.17%) and G7060A (61.70%) in L1; and G7521A (98.08%) in the LCR. The most prevalent amino acid variations were D25E in E6 and N29S in E7. In addition, 28 novel variations of HPV 16 were reported. Some covariations between different genes were obtained. In this study, HPV 16 variants belonged to the European lineage and the Asian lineage. Compared with neighboring districts, the distribution of HPV 16 variants in northeast China had a typical pattern. As the first report on HPV 16 variants in northeast China, it should be helpful for designing a HPV vaccine and HPV vaccination program in China.
Journal of Microbiology | 2014
Zhi-Wei Song; Yan-Xiu Ma; Bao-qing Fu; Xu Teng; Sijia Chen; Wei-Zhen Xu; Hong-Xi Gu
To explore the relationship of the MOV10, A3G, and IFN-α mRNA levels with chronic hepatitis B virus (HBV) infection, Blood samples from 96 patients with chronic hepatitis B (CHB) and 21 healthy individuals as control were collected. HBV DNA load and aminotransferase in the serum were tested using real time PCR and velocity methods, respectively. The MOV10, A3G, and IFN-α mRNA levels in the peripheral blood mononuclear cells (PBMC) were examined through qRT-PCR. The MOV10, A3G, and IFN-α mRNA levels in CHB group was significantly lower than those in the control group (P<0.01, P<0.05, P<0.01, respectively). The A3G mRNA level in the high-HBV DNA load group was lower than that in the low-HBV DNA load group (P<0.05). However, no statistical difference was found in the MOV10 and IFN-α mRNA levels between the two HBV DNA load groups. Furthermore, the MOV10 mRNA level showed positive correlation with IFN-α in the control group. These results indicated that the expression of the innate immune factors MOV10, A3G, and IFN-α is affected by chronic HBV infection.
Journal of Virological Methods | 2010
Xu Teng; Wei-Zhen Xu; Mei-Li Hao; Yong Fang; Ying-Xin Zhao; Sijia Chen; Di Li; Hong-Xi Gu
Drug-resistant hepatitis B virus (HBV) is a serious problem affecting antiviral therapy. In this study, two long-term eukaryotic cell lines with full-length HBV were constructed and contained either lamivudine-resistant mutants (HBV-YIDD) or wild-type virus (HBV-wt). High levels of intracellular viral DNA replication were observed continuously after transfecting the plasmids into HepG2 cells, and HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) were secreted into the cell culture supernatant. A series of experiments showed differential inhibition of HBV gene expression and replication by four specific siRNAs, according to the principles of allele-specific RNAi technology. The results showed that the designed siRNAs with a mismatch in the sixteenth nucleotide of the guide strands could effectively discriminate the HBV-YIDD mutants from the wild-type alleles, thus providing a new insight into the development of antiviral therapy with differing or complementary patterns characteristic of lamivudine-resistant HBV.
Experimental Cell Research | 2016
Xia Zhai; Ying Qin; Yang Chen; Lexun Lin; Tianying Wang; Xiaoyan Zhong; Xiaoyu Wu; Sijia Chen; Jing Li; Yan Wang; Fengmin Zhang; Wenran Zhao; Zhaohua Zhong
Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection.
Virus Research | 2015
Yan-Xiu Ma; Di Li; Li-Juan Fu; Bao-qing Fu; Sijia Chen; Wei-Zhen Xu; Xu Teng; Zhi-Wei Song; Hong-Xi Gu
Recent studies have shown that the Moloney leukemia virus 10 (Mov10), a putative RNA helicase, has very broad and potent antiretroviral activities. Hepatitis B virus (HBV) has a reverse transcription process, but the potential role of Mov10 in HBV replication remains unknown. In this study, Mov10 was demonstrated to affect HBV expression in HepG2 and HepG2.2.15 cell lines. The data showed that the over-expression of exogenous Mov10 resulted in an increase of the HBsAg and HBeAg levels in the culture supernatant and HBV mRNA level in transfected cells at a low dose and resulted in a decrease at a high dose, but HBV DNA in culture supernatant was not affected. The knockdown of endogenous Mov10 expression through siRNA treatment could suppress levels of HBsAg, HBeAg and HBV mRNA, but had no effect on HBV DNA. Above results indicate that an appropriate level of exogenous Mov10 is responsible for HBV replication, that any perturbation in the level of Mov10 could affect HBV replication, while the endogenous Mov10 could promote HBV replication in vitro. The precise mechanisms that underlie the action of Mov10 on HBV still need further investigation.
Journal of Viral Hepatitis | 2011
Xu Teng; Jian-Yu Liu; Di Li; Yong Fang; X.-Y. Wang; Yan-Xiu Ma; Sijia Chen; Ying-Xin Zhao; Wei-Zhen Xu; Hong-Xi Gu
Summary. Understanding the consequences of mutation in the tyrosine–methionine–aspartate–aspartate (YMDD) motif of hepatitis B virus (HBV) genome on replication is critical for treating chronic hepatitis B with lamivudine. Allele‐specific gene silencing by RNAi (allele‐specific RNAi: ASP‐RNAi) is an advanced application of RNAi techniques. Use of this strategy as a means for specifically inhibiting an allele expression of interest suggested that it can specifically suppress the expression of alleles causing disease without inhibiting the expression of corresponding wild‐type alleles. However, no studies have used ASP‐RNAi to address the issue of HBV lamivudine resistance. In this study, we applied ASP‐RNAi into two long‐term eukaryotic cell lines of full‐length HBV containing either lamivudine‐resistant mutants (HBV‐YIDD) or wild type (HBV–WT) which we generated in previously. The designed siRNAs were also used in this eukaryotic expression system together with lamivudine. ELISA and real‐time PCR were performed to monitor virus‐specific protein synthesis and viral DNA replication. The results showed that the base substitutions conferring marked ASP‐RNAi appeared to be largely present in positions 1, 3, 6, 11, 12, 15 and 19 of the sense strand of siRNAs which were different from the most sensitive positions of this application in eukaryotes. In addition, siRNA–lamivudine combinations did not possess the prominent anti‐HBV activity we expected because of some unknown mechanisms. These findings recapitulated many of the features of ASP‐RNAi in hepadnaviruses which provided a new insight into the development of a potent strategy against HBV drug resistance.
Scientific Reports | 2018
Yan Wang; Ying Qin; Tianying Wang; Yang Chen; Xiujuan Lang; Jia Zheng; Shuoyang Gao; Sijia Chen; Xiaoyan Zhong; Yusong Mu; Xiaoyu Wu; Fengming Zhang; Wenran Zhao; Zhaohua Zhong
Enterovirus 71 (EV71) is the primary causative pathogen of hand, foot, and mouth disease (HFMD), affecting children with severe neurological complications. Pyroptosis is a programmed cell death characterized by cell lysis and inflammatory response. Although proinflammatory response has been implicated to play important roles in EV71-caused diseases, the involvement of pyroptosis in the pathogenesis of EV71 is poorly defined. We show that EV71 infection induced caspase-1 activation. Responding to the activation of caspase-1, the expression and secretion of both IL-1β and IL-18 were increased in EV71-infected cells. The treatment of caspase-1 inhibitor markedly improved the systemic response of the EV71-infected mice. Importantly, caspase-1 inhibitor suppressed EV71 replication in mouse brains. Similarly, pyroptosis was activated by the infection of coxsackievirus B3 (CVB3), an important member of the Enterovirus genus. Caspase-1 activation and the increased expression of IL-18 and NLRP3 were demonstrated in HeLa cells infected with CVB3. Caspase-1 inhibitor also alleviated the overall conditions of virus-infected mice with markedly decreased replication of CVB3 and reduced expression of caspase-1. These results indicate that pyroptosis is involved in the pathogenesis of both EV71 and CVB3 infections, and the treatment of caspase-1 inhibitor is beneficial to the host response during enterovirus infection.
Viruses | 2016
Heng Wu; Xia Zhai; Yang Chen; Ruixue Wang; Lexun Lin; Sijia Chen; Tianying Wang; Xiaoyan Zhong; Xiaoyu Wu; Yan Wang; Fengmin Zhang; Wenran Zhao; Zhaohua Zhong
Coxsackievirus B (CVB) belongs to Enterovirus genus within the Picornaviridae family, and it is one of the most common causative pathogens of viral myocarditis in young adults. The pathogenesis of myocarditis caused by CVB has not been completely elucidated. In CVB infection, autophagy is manipulated to facilitate viral replication. Here we report that protein 2B, one of the non-structural proteins of CVB3, possesses autophagy-inducing capability. The autophagy-inducing motif of protein 2B was identified by the generation of truncated 2B and site-directed mutagenesis. The expression of 2B alone was sufficient to induce the formation of autophagosomes in HeLa cells, while truncated 2B containing the two hydrophobic regions of the protein also induced autophagy. In addition, we demonstrated that a single amino acid substitution (56V→A) in the stem loop in between the two hydrophobic regions of protein 2B abolished the formation of autophagosomes. Moreover, we found that 2B and truncated 2B with autophagy-inducting capability were co-localized with LC3-II. This study indicates that protein 2B relies on its transmembrane hydrophobic regions to induce the formation of autophagosomes, while 56 valine residue in the stem loop of protein 2B might exert critical structural influence on its two hydrophobic regions. These results may provide new insight for understanding the molecular mechanism of autophagy triggered by CVB infection.