Sijie He
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sijie He.
The Plant Cell | 2009
Hada Wuriyanghan; Bo Zhang; Wan-Hong Cao; Biao Ma; Gang Lei; Yun-Feng Liu; Wei Wei; Hua-Jun Wu; Li-Juan Chen; Hao-Wei Chen; Yangrong Cao; Sijie He; Wan-Ke Zhang; Xiu-Jie Wang; Shou-Yi Chen; Zhang J
Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the α-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.
Plant Molecular Biology | 2006
Hua-Lin Zhou; Sijie He; Yangrong Cao; Tao Chen; Baoxing Du; Chengcai Chu; Zhang J; Shou-Yi Chen
A dwarf mutant glu was identified from screening of T-DNA tagged rice population. Genetic analysis of the T1 generation of glu revealed that a segregation ratio of wild-type:dwarf phenotype was 3:1, suggesting that the mutated phenotype was controlled by a single recessive nuclear locus. The mutated gene OsGLU1, identified by Tail-PCR, encodes a putative membrane-bound endo-1,4-β-D-glucanase, which is highly conserved between mono- and dicotyledonous plants. Mutation of OsGLU1 resulted in a reduction in cell elongation, and a decrease in cellulose content but an increase in pectin content, suggesting that OsGLU1 affects the internode elongation and cell wall components of rice plants. Transgenic glu mutants harboring the OsGLU1 gene complemented the mutation and displayed the wild-type phenotype. In addition, OsGLU1 RNAi plants showed similar phenotype as the glu mutant has. These results indicate that OsGLU1 plays important roles in plant cell growth. Gibberellins and brassinosteroids induced OsGLU1 expression. In rice genome, endo-1,4-β-D-glucanases form a multiple gene family with 15 members, and each may have a distinct expression pattern in different organs. These results indicate that endo-1, 4-β-D-glucanases may play diverse roles in growth and developmental process of rice plants.
Plant Physiology | 2013
Li-Juan Chen; Hada Wuriyanghan; Yu-Qin Zhang; Kai-Xuan Duan; Hao-Wei Chen; Qing-Tian Li; Xiang Lu; Sijie He; Biao Ma; Wan-Ke Zhang; Qing Lin; Shou-Yi Chen; Zhang J
A receptor-like kinase, part of a family of proteins contributing to plant development and defense, is involved in abiotic stress and the senescence process, integrating stress signals into a developmental program for adaptive growth. Receptor-like kinases play important roles in plant development and defense responses; however, their functions in other processes remain unclear. Here, we report that OsSIK2, an S-domain receptor-like kinase from rice (Oryza sativa), is involved in abiotic stress and the senescence process. OsSIK2 is a plasma membrane-localized protein with kinase activity in the presence of Mn2+. OsSIK2 is expressed mainly in rice leaf and sheath and can be induced by NaCl, drought, cold, dark, and abscisic acid treatment. Transgenic plants overexpressing OsSIK2 and mutant sik2 exhibit enhanced and reduced tolerance to salt and drought stress, respectively, compared with the controls. Interestingly, a truncated version of OsSIK2 without most of the extracellular region confers higher salt tolerance than the full-length OsSIK2, likely through the activation of different sets of downstream genes. Moreover, seedlings of OsSIK2-overexpressing transgenic plants exhibit early leaf development and a delayed dark-induced senescence phenotype, while mutant sik2 shows the opposite phenotype. The downstream PR-related genes specifically up-regulated by full-length OsSIK2 or the DREB-like genes solely enhanced by truncated OsSIK2 are all induced by salt, drought, and dark treatments. These results indicate that OsSIK2 may integrate stress signals into a developmental program for better adaptive growth under unfavorable conditions. Manipulation of OsSIK2 should facilitate the improvement of production in rice and other crops.
Molecular Plant | 2013
Biao Ma; Sijie He; Kai-Xuan Duan; Cui-Cui Yin; Hui Chen; Chao Yang; Qing Xiong; Qingxin Song; Xiang Lu; Hao-Wei Chen; Wan-Ke Zhang; Tie-Gang Lu; Shou-Yi Chen; Zhang J
Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.
Plant Physiology | 2015
Chao Yang; Biao Ma; Sijie He; Qing Xiong; Kai-Xuan Duan; Cui-Cui Yin; Hui Chen; Xiang Lu; Shou-Yi Chen; Zhang J
Two transcriptional regulators of ethylene signaling play differential roles in ethylene and salt stress responses, distinct from their orthologs in Arabidopsis. Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops.
PLOS Genetics | 2014
Biao Ma; Cui-Cui Yin; Sijie He; Xiang Lu; Wan-Ke Zhang; Tie-Gang Lu; Shou-Yi Chen; Zhang J
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.
The Plant Cell | 2015
Cui-Cui Yin; Biao Ma; Derek Collinge; Barry J. Pogson; Sijie He; Qing Xiong; Kai-Xuan Duan; Hui Chen; Chao Yang; Xiang Lu; Yiqin Wang; Wan-Ke Zhang; Chengcai Chu; Xiaohong Sun; Shuang Fang; Jinfang Chu; Tie-Gang Lu; Shou-Yi Chen; Zhang J
Ethylene induces the expression of MHZ5, a carotenoid isomerase, the production of neoxanthin, an ABA biosynthesis precursor, and the accumulation of ABA, leading to root growth inhibition in dark-grown rice seedlings. Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.
Science China-life Sciences | 2011
Shouqiang Ouyang; Sijie He; Peng Liu; Wan-Ke Zhang; Zhang J; Shou-Yi Chen
Tocopherols synthesized exclusively by photosynthetic organisms are major antioxidants in biomembranes. In plants, tocopherol cyclase (TC/VTE1) catalyzes the conversion of 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ) to γ-tocopherol. In the present study, OsVTE1, which encodes a rice tocopherol cyclase ortholog, was cloned and characterized. OsVTE1 was induced significantly by abiotic stresses such as high salt, H2O2, drought, cold and by the plant hormones ABA and salicylic acid. The tissue-specific expression pattern and OsVTE1-promoter GUS activity assay showed that OsVTE1 was mainly expressed in the leaf, and also could be detected in the root, stem and panicle. Compared with control plants, transgenic plants with Os-VTE1 RNA interference (OsVTE1-RNAi) were more sensitive to salt stress whereas, in contrast, transgenic plants overexpressing OsVTE1 (OsVTE1-OX) showed higher tolerance to salt stress. The DAB in vivo staining showed that OsVTE1-OX plants accumulated less H2O2 than did control plants.
European Physical Journal B | 1988
Wei Wang; Y. J. Wang; Sijie He; H. Iwasaki
The A15Nb3Si with a composition closed to stoichiometric compound has been synthesized under high pressure from a starting material of Nb77Si23 amorphous alloys. High pressure annealing was carried out in Bridgman anvils apparatus. The amorphous alloy would decompose into A15Nb3Si, bcc Nb solid solution and hexagonal phase when it was annealed under a pressure lower or a temperature higher than that for forming single phase A15Nb3Si. The yielded A15Nb3Si exhibited a superconducting transition temperatureTc of 19.1 K, and has been indexed unambiguously with a lattice parameter ofa=0.5093 nm. Moreover, a nonlinear relationship betweenTc anda has been constructed from our experimental data, and aTc of 27 K for stoichiometric A15Nb3Si can be expected.
The Plant Cell | 2017
Qing Xiong; Biao Ma; Xiang Lu; Yi-Hua Huang; Sijie He; Chao Yang; Cui-Cui Yin; He Zhao; Yang Zhou; Wan-Ke Zhang; Wen-Sheng Wang; Zhi-Kang Li; Shou-Yi Chen; Zhang J
Ethylene inhibits the production of jasmonic acid to facilitate the emergence of rice seedlings from the soil. Elongation of the mesocotyl and coleoptile facilitates the emergence of rice (Oryza sativa) seedlings from soil and is affected by various genetic and environment factors. The regulatory mechanism underlying this process remains largely unclear. Here, we examined the regulation of mesocotyl and coleoptile growth by characterizing a gaoyao1 (gy1) mutant that exhibits a longer mesocotyl and longer coleoptile than its original variety of rice. GY1 was identified through map-based cloning and encodes a PLA1-type phospholipase that localizes in chloroplasts. GY1 functions at the initial step of jasmonic acid (JA) biosynthesis to repress mesocotyl and coleoptile elongation in etiolated rice seedlings. Ethylene inhibits the expression of GY1 and other genes in the JA biosynthesis pathway to reduce JA levels and enhance mesocotyl and coleoptile growth by promoting cell elongation. Genetically, GY1 acts downstream of the OsEIN2-mediated ethylene signaling pathway to regulate mesocotyl/coleoptile growth. Through analysis of the resequencing data from 3000 rice accessions, we identified a single natural variation of the GY1 gene, GY1376T, which contributes to mesocotyl elongation in rice varieties. Our study reveals novel insights into the regulatory mechanism of mesocotyl/coleoptile elongation and should have practical applications in rice breeding programs.