Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siling Wang is active.

Publication


Featured researches published by Siling Wang.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Mesoporous silica nanoparticles in drug delivery and biomedical applications

Ying Wang; Qinfu Zhao; Ning Han; Ling Bai; Jia Li; Jia Liu; Erxi Che; Liang Hu; Qiang Zhang; Tongying Jiang; Siling Wang

UNLABELLED In the past decade, mesoporous silica nanoparticles (MSNs) with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. In this review, we highlight the recent advances in silica-assisted drug delivery systems, including (1) MSN-based immediate/sustained drug delivery systems and (2) MSN-based controlled/targeted drug delivery systems. In addition, we summarize the biomedical applications of MSNs, including (1) MSN-based biotherapeutic agent delivery; (2) MSN-assisted bioimaging applications; and (3) MSNs as bioactive materials for tissue regeneration. FROM THE CLINICAL EDITOR This comprehensive review presents recent advances in mesoporous silica nanoparticles assisted drug delivery systems, including both immediate and sustained delivery systems as well as controlled release and targeted drug delivery systems. In addition to achieving therapeutic agent delivery, imaging applications and potential use of silica NPs in tissue regeneration are also discussed.


Journal of Controlled Release | 2010

Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan

Yanzhuo Zhang; Zhuangzhi Zhi; Tongying Jiang; Jinghai Zhang; Zhanyou Wang; Siling Wang

The purpose of this study was to develop mesoporous silica nanoparticles (MSNs) loaded with a poorly water-soluble drug, intended to be orally administered, able to improve the dissolution rate and enhance the drug loading capacity. Spherical MSNs were synthesized using an organic template method in an oil/water phase, and large pore diameter MSNs were functionalized with aminopropyl groups through postsynthesis. MSNs as well as the resulting functionalized MSNs were investigated as matrices for loading and release of the model drug telmisartan (TEL). The effects of different pore sizes and surface chemical groups on TEL uptake and release were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC. The total pore volume and the pore diameter of MSNs were the two main factors limiting the maximum drug load capacity. MSNs allow a very high drug loading of about 60% in weight. The release rate of TEL from MSNs with a pore diameter of 12.9 nm was found to be effectively increased and the release rate of TEL from the functionalized MSNs was effectively controlled compared with that from the unmodified MSNs. We believe that the present study will help in the design of oral drug delivery systems for the dissolution enhancement and/or sustained release of poorly water-soluble drugs.


International Journal of Pharmaceutics | 2011

Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery

Yanhua Liu; Jin Sun; Wen Cao; Jianhong Yang; He Lian; Xin Li; Yinghua Sun; Yongjun Wang; Siling Wang; Zhonggui He

A series of novel self-assembled hyaluronic acid derivatives (HA-C(18)) grafted with hydrophobic octadecyl moiety and further dual targeting folic acid-conjugated HA-C(18) (FA-HA-C(18)) were synthesized. With the increase in the degree of substitution of octadecyl group from 12.7% to 19.3%, the critical micellar concentration of HA-C(18) copolymers decreased from 37.3 to 10.0 μg/mL. Paclitaxel (PTX) was successfully encapsulated into the hydrophobic cores of the HA-C(18) and FA-HA-C(18) micelles, with encapsulation efficiency as high as 97.3%. The physicochemical properties of the polymeric micelles were measured by DLS, TEM and DSC. Moreover, in vitro release behavior of PTX was investigated by dialysis bag method and PTX was released from micelles in a near zero-order sustained manner. In vitro antitumor activity tests suggested PTX-loaded HA-C(18) and FA-HA-C(18) micelles exhibited significantly higher cytotoxic activity against MCF-7 and A549 cells compared to Taxol at a lower PTX concentration. The cellular uptake experiments were conducted by quantitative assay of PTX cellular accumulation and confocal laser scanning microscopy imaging of coumarin-6 labeled HA-C(18) and FA-HA-C(18) micelles in folate receptor overexpressing MCF-7 cells. Folate and CD44 receptor competitive inhibition studies performed by fluorescence microscopy imaging suggested intracellular delivery of HA-C(18) and FA-HA-C(18) micelles were efficiently taken up via CD44 receptor-mediated endocytosis. The folate receptor-mediated endocytosis further enhanced internalized amounts of FA-HA-C(18) micelles in MCF-7 cells, as compared with HA-C(18) micelles. The internalization pathways of PTX-loaded HA-C(18) and FA-HA-C(18) micelles might include clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis. Therefore, the present study suggested that HA-C(18) and FA-HA-C(18) copolymers as biodegradable, biocompatible and cell-specific targetable nanostructure carriers, are promising nanosystems for cellular and intracellular targeting delivery of hydrophobic anticancer drugs.


Molecular Pharmaceutics | 2012

Mesoporous Silica Nanoparticles for Increasing the Oral Bioavailability and Permeation of Poorly Water Soluble Drugs

Yanzhuo Zhang; Jiancheng Wang; Xiaoyu Bai; Tongying Jiang; Qiang Zhang; Siling Wang

We investigate the effects of spherical mesoporous silica nanoparticles (MSNs) as an oral drug delivery system to improve the oral bioavailability of the model drug telmisartan (TEL) and examine their cellular uptake and cytotoxicity. Further, we explore the mechanisms behind the improved oral absorption of poorly soluble drugs promoted by MSNs. An investigation of intestinal epithelial cellular binding, association and uptake was carried out by laser scanning confocal microscopy, transmission electron microscopy and fluorescence activated cell sorting. The results show that the cellular uptake is highly time-, concentration- and size-dependent. The model drug permeability studies in the human colon carcinoma (Caco-2) cell lines indicated that MSNs could significantly enhance TEL permeability and reduce rate of drug efflux. After loading TEL into MSNs, its oral bioavailability was compared with that of the marketed product Micardis and TEL-loaded ordered mesoporous silica microparticles (MSMs) in beagle dogs. The relative bioavailability of TEL-loaded MSN formulation and TEL-loaded MSM formulation was 154.4 ± 28.4% and 129.1 ± 15.6%, respectively. MSNs offer the potential to achieve enhanced oral bioavailability of poorly soluble drugs via improved drug dissolution rate and enhanced drug permeability.


Journal of Colloid and Interface Science | 2011

Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug

Yanchen Hu; Jing Wang; Zhuangzhi Zhi; Tongying Jiang; Siling Wang

A facile and simplified method was developed for the synthesis of 3D cubic mesoporous SBA-16 with both a spherical morphology and controllable pore size. The addition of CTAB during the synthesis allowed not only good control over the macroscopic morphology but also a significant reduction in the synthesis time. Notably, the pore size can simultaneously be adjusted by simply controlling the heating temperature. The pharmaceutical performance of the resulting SBA-16 for the delivery of the water-insoluble drug indomethacin (IMC), a non-steroidal anti-inflammatory agent used as a model drug, was systematically studied using nitrogen adsorption, powder X-ray diffraction, differential scanning calorimetry, infrared spectrometry and in vitro dissolution investigations. It was found that IMC could be effectively loaded into mesoporous SBA-16 via the solvent deposition method. An altered physical state and a marked improvement in the dissolution rate were observed for IMC after being loaded into SBA-16 microspheres. In particular, SBA-16 microspheres with the largest pore size (9.0 nm) and highly open and accessible pore networks exhibited the fastest drug release profile. We envisage that the improved drug delivery profiles obtained using SBA-16 as described in our work will offer an interesting option for the formulation of poorly water-soluble drugs.


Journal of Pharmacy and Pharmaceutical Sciences | 2010

Mechanism of Dissolution Enhancement and Bioavailability of Poorly Water Soluble Celecoxib by Preparing Stable Amorphous Nanoparticles

Yinghui Liu; Changshan Sun; Yanru Hao; Tongying Jiang; Li Zheng; Siling Wang

PURPOSE Nanoparticle engineering offers promising methods for the formulation of poorly water soluble drug compounds. The aim of the present work was to enhance dissolution and oral bioavailability of poorly water-soluble celecoxib (CXB) by preparing stable CXB nanoparticles using a promising method, meanwhile, investigate the mechanism of increasing dissolution of CXB. METHODS CXB nanoparticles were produced by combining the antisolvent precipitation and high pressure homogenization (HPH) approaches in the presence of HPMC E5 and SDS (2:1, w/w). Then the CXB nanosuspensions were converted into dry powders by spray-drying. The effect of process variables on particle size and physical state of CXB were investigated. The physicochemical properties of raw CXB and CXB nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), X-ray photoelectron spectra (XPS), fourier transform infrared (FT-IR) spectroscopy, diffrential scanning calorimetry (DSC), as well as, measuring the particle size and contact angle. Additionally, the studies of in-vitro drug dissolution and oral bioavailability in beagle dogs of nanoparticles were performed. RESULTS The images of SEM revealed spherical CXB nanoparticles. The DSC and XRPD results indicated that the antisolvent precipitation process led to the amorphization of CXB. Under storage, the amorphous CXB nanoparticles showed promising physical stability. The XPS data indicated the amorphous CXB nanoparticles exhibited different surface property compared to raw CXB. Hydrogen bonds were formed between the raw CXB and HPMC E5 as proven by the FT-IR spectra. CXB nanoparticles increased the saturation solubility of CXB fourfold. CXB nanoparticles completely dissolved in the dissolution medium of phosphate buffer (pH 6.8, 0.5% SDS) within 5 min, while there was only 30% of raw CXB dissolved. The C(max) and AUC(0-24h) of CXB nanoparticles were approximately threefold and twofold greater than those of the Celecoxib Capsules, respectively. CONCLUSIONS The process by combining the antisolvent precipitation under sonication and HPH was a promising method to produce small, uniform and stable CXB nanoparticles with markedly enhanced dissolution rate and oral bioavailability due to an increased solubility that is attributed to a combination of amorphization and nanonization with increased surface area, improved wettability and reduced diffusion pathway.


Protein Expression and Purification | 2003

Expression of an antitumor–analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli

Yan-Feng Liu; Runlin Z. Ma; Siling Wang; Zi-Yuan Duan; Jin-Hai Zhang; Li-Jun Wu; Chun-Fu Wu

The gene encoding a putative mature antitumor-analgesic peptide (AGAP) from the venom of the Chinese scorpion Buthus martensii Karsch was obtained by polymerase chain reaction (PCR) according to its cDNA sequence and expressed in Escherichia coli. While most of the recombinant AGAP was expressed in the form of insoluble inclusion body. The recombinant AGAP was purified to homogeneity by metal chelating affinity chromatography. Pharmaceutical tests showed that the recombinant AGAP has both analgesic and antitumor activities on mice.


International Journal of Pharmaceutics | 2012

Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties.

Tianyi Wang; Haitao Jiang; Qinfu Zhao; Siling Wang; Meijuan Zou; Gang Cheng

Three different kinds of silica (S2, S1 and SBA-15) with different particle sizes (130, 430 nm and 1-2 μm) and different pore characteristics (i.e. pore size and shape) were developed as oral vaccine immunological adjuvants and the relationship between the silica architecture and immunological properties was investigated. The silica particles were characterized using SEM, TEM and nitrogen adsorption. Model antigen bovine serum albumin (BSA) was successfully entrapped into the silica pores to produce a sustained release vaccine delivery system. Compared with the responsiveness induced by parenteral administration of BSA emulsified in Freunds complete adjuvant (FCA), oral immunization with the silica/BSA formulation produced a stimulated humoral and mucosal (sIgA) response. The IgG and IgA titers induced by loading BSA was as follows: S1>S2>SBA-15. The highest IgG and IgA titers of S1 were attributed to its large honeycombed pores and the optimal particle diameter of 430 nm. The corresponding IgG1 and IgG2a titers were also investigated to confirm that BSA loaded in nanoparticles by oral immunization can induce both T-helper 1- and T-helper 2- (Th1 or Th2) mediated responses. We believe that the results of our research will open up new avenues for the formulation of oral vaccines.


International Journal of Pharmaceutics | 2011

Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs.

Chao Wu; Zhongyan Wang; Zhuangzhi Zhi; Tongying Jiang; Jinghai Zhang; Siling Wang

A biodegradable porous starch foam (BPSF) was developed for the first time as a carrier in order to improve the dissolution and enhance the oral bioavailability of lovastatin - defined as a model poorly water soluble BCS type II drug. In this paper, BPSF was prepared by the solvent exchange method and characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis in order to perform the morphological and structural characterization of BPSF. Lovastatin was loaded by immersion/solvent evaporation into the BPSF which provided a stable hydrophilic matrix with a nano-porous structure. The solid state properties of the loaded BPSF samples were characterized by SEM, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). In vitro and in vivo drug release studies showed that when BPSF was used as a carrier it allowed immediate release of lovastatin and enhanced the dissolution rate in comparison with crystalline lovastatin and commercial capsules. These results provide important information about the mechanism of drug adsorption and release from BPSF as a carrier. Accordingly, BPSF has a promising future as a device for the oral delivery of poorly water soluble drugs.


Acta Biomaterialia | 2015

Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells.

Qinfu Zhao; Jia Liu; Wenquan Zhu; Changshan Sun; Donghua Di; Ying Zhang; Pu Wang; Zhanyou Wang; Siling Wang

In this paper, a redox and enzyme dual-stimuli responsive delivery system (MSN-SS-HA) based on mesoporous silica nanoparticles (MSN) for targeted drug delivery has been developed, in which hyaluronic acid (HA) was conjugated on the surface of silica by cleavable disulfide (SS) bonds. HA possesses many attractive features, including acting as a targeting ligand and simultaneously a capping agent to achieve targeted and controlled drug release, prolonging the blood circulation time, and increasing the physiological stability and biocompatibility of MSN. The anticancer drug doxorubicin (DOX) was chosen as a model drug. In vitro drug release profiles showed that the release of DOX was markedly restricted in pH 7.4 and pH 5.0 phosphate buffer solution (PBS), while it was significantly accelerated upon the addition of glutathione (GSH)/hyaluronidases (HAase). In addition, the release was further accelerated in the presence of both GSH and HAase. Confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS) showed that MSN-SS-HA exhibited a higher cellular uptake via cluster of differentiation antigen-44 (CD44) receptor-mediated endocytosis compared with thiol (SH)-functionalized MSN (MSN-SH) in CD44 receptor over-expressed in human HCT-116 cells. The DOX-loaded MSN-SS-HA was more cytotoxic against HCT-116 cells than NIH-3T3 (CD44 receptor-negative) cells due to the enhanced cellular uptake of MSN-SS-HA. This paper describes the development of an effective method for using a single substance as multi-functional material for MSN to simultaneously regulate drug release and achieve targeted delivery.

Collaboration


Dive into the Siling Wang's collaboration.

Top Co-Authors

Avatar

Tongying Jiang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Qinfu Zhao

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Jinghai Zhang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yikun Gao

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Tianyi Wang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Changshan Sun

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Donghua Di

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Ning Han

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge