Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silke Langenheder is active.

Publication


Featured researches published by Silke Langenheder.


Frontiers in Microbiology | 2012

Fundamentals of microbial community resistance and resilience.

Ashley Shade; Hannes Peter; Steven D. Allison; Didier L. Baho; Mercè Berga; Helmut Bürgmann; David H. Huber; Silke Langenheder; Jay T. Lennon; Jennifer B. H. Martiny; Kristin L. Matulich; Thomas M. Schmidt; Jo Handelsman

Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability.


Applied and Environmental Microbiology | 2003

Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations.

Alexander Eiler; Silke Langenheder; Stefan Bertilsson; Lars J. Tranvik

ABSTRACT Batch cultures of aquatic bacteria and dissolved organic matter were used to examine the impact of carbon source concentration on bacterial growth, biomass, growth efficiency, and community composition. An aged concentrate of dissolved organic matter from a humic lake was diluted with organic compound-free artificial lake water to obtain concentrations of dissolved organic carbon (DOC) ranging from 0.04 to 2.53 mM. The bacterial biomass produced in the cultures increased linearly with the DOC concentration, indicating that bacterial biomass production was limited by the supply of carbon. The bacterial growth rate in the exponential growth phase exhibited a hyperbolic response to the DOC concentration, suggesting that the maximum growth rate was constrained by the substrate concentration at low DOC concentrations. Likewise, the bacterial growth efficiency calculated from the production of biomass and CO2 increased asymptotically from 0.4 to 10.4% with increasing DOC concentration. The compositions of the microbial communities that emerged in the cultures were assessed by separation of PCR-amplified 16S rRNA fragments by denaturing gradient gel electrophoresis. Nonmetric multidimensional scaling of the gel profiles showed that there was a gradual change in the community composition along the DOC gradient; members of the β subclass of the class Proteobacteria and members of the Cytophaga-Flavobacterium group were well represented at all concentrations, whereas members of the α subclass of the Proteobacteria were found exclusively at the lowest carbon concentration. The shift in community composition along the DOC gradient was similar to the patterns of growth efficiency and growth rate. The results suggest that the bacterial growth efficiencies, the rates of bacterial growth, and the compositions of bacterial communities are not constrained by substrate concentrations in most natural waters, with the possible exception of the most oligotrophic environments.


Environmental Microbiology Reports | 2012

Local and regional factors influencing bacterial community assembly

Eva S. Lindström; Silke Langenheder

The classical view states that microbial biogeography is not affected by dispersal barriers or historical events, but only influenced by the local contemporary habitat conditions (species sorting). This has been challenged during recent years by studies suggesting that also regional factors such as mass effect, dispersal limitation and neutral assembly are important for the composition of local bacterial communities. Here we summarize results from biogeography studies in different environments, i.e. in marine, freshwater and soil as well in human hosts. Species sorting appears to be the most important mechanism. However, this result might be biased since this is the mechanism that is easiest to measure, detect and interpret. Hence, the importance of regional factors may have been underestimated. Moreover, our survey indicates that different assembly mechanisms might be important for different parts of the total community, differing, for example, between generalists and specialists, and between taxa of different dispersal ability and motility. We conclude that there is a clear need for experimental studies, first, to clearly separate regional and local factors in order to study their relative importance, and second, to test whether there are differences in assembly mechanisms depending on different taxonomic or functional groups.


The ISME Journal | 2012

Unraveling assembly of stream biofilm communities.

Katharina Besemer; Hannes Peter; Jürg Brendan Logue; Silke Langenheder; Eva S. Lindström; Lars J. Tranvik; Tom J. Battin

Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.


The ISME Journal | 2013

Biogeography of bacterial communities exposed to progressive long-term environmental change

Ramiro Logares; Eva S. Lindström; Silke Langenheder; Jürg Brendan Logue; Harriet Paterson; Johanna Laybourn-Parry; Karin Rengefors; Lars J. Tranvik; Stefan Bertilsson

The response of microbial communities to long-term environmental change is poorly understood. Here, we study bacterioplankton communities in a unique system of coastal Antarctic lakes that were exposed to progressive long-term environmental change, using 454 pyrosequencing of the 16S rDNA gene (V3–V4 regions). At the time of formation, most of the studied lakes harbored marine-coastal microbial communities, as they were connected to the sea. During the past 20 000 years, most lakes isolated from the sea, and subsequently they experienced a gradual, but strong, salinity change that eventually developed into a gradient ranging from freshwater (salinity 0) to hypersaline (salinity 100). Our results indicated that present bacterioplankton community composition was strongly correlated with salinity and weakly correlated with geographical distance between lakes. A few abundant taxa were shared between some lakes and coastal marine communities. Nevertheless, lakes contained a large number of taxa that were not detected in the adjacent sea. Abundant and rare taxa within saline communities presented similar biogeography, suggesting that these groups have comparable environmental sensitivity. Habitat specialists and generalists were detected among abundant and rare taxa, with specialists being relatively more abundant at the extremes of the salinity gradient. Altogether, progressive long-term salinity change appears to have promoted the diversification of bacterioplankton communities by modifying the composition of ancestral communities and by allowing the establishment of new taxa.


The ISME Journal | 2011

Species sorting and neutral processes are both important during the initial assembly of bacterial communities.

Silke Langenheder; Anna J. Székely

Many studies have shown that species sorting, that is, the selection by local environmental conditions is important for the composition and assembly of bacterial communities. On the other hand, there are other studies that could show that bacterial communities are neutrally assembled. In this study, we implemented a microcosm experiment with the aim to determine, at the same time, the importance of species sorting and neutral processes for bacterial community assembly during the colonisation of new, that is, sterile, habitats, by atmospheric bacteria. For this we used outdoor microcosms, which contained sterile medium from three different rock pools representing different environmental conditions, which were seeded by rainwater bacteria. We found some evidence for neutral assembly processes, as almost every 4th taxon growing in the microcosms was also detectable in the rainwater sample irrespective of the medium. Most of these taxa belonged to widespread families with opportunistic growth strategies, such as the Pseudomonadaceae and Comamonadaceae, indicating that neutrally assembled taxa may primarily be generalists. On the other hand, we also found evidence for species sorting, as one out of three media selected a differently composed bacterial community. Species sorting effects were relatively weak and established themselves via differences in relative abundance of generalists among the different media, as well as media-specific occurrences of a few specific taxa. In summary, our results suggest that neutral and species sorting processes interact during the assembly of bacterial communities and that their importance may differ depending on how many generalists and specialists are present in a community.


Applied and Environmental Microbiology | 2006

Structure and function of bacterial communities emerging from different sources under identical conditions.

Silke Langenheder; Eva S. Lindström; Lars J. Tranvik

ABSTRACT The aim of this study was to compare two major hypotheses concerning the formation of bacterial community composition (BCC) at the local scale, i.e., whether BCC is determined by the prevailing local environmental conditions or by “metacommunity processes.” A batch culture experiment where bacteria from eight distinctly different aquatic habitats were regrown under identical conditions was performed to test to what extent similar communities develop under similar selective pressure. Differently composed communities emerged from different inoculum communities, as determined by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. There was no indication that similarity increased between communities upon growth under identical conditions compared to that for growth at the ambient sampling sites. This suggests that the history and distribution of taxa within the source communities were stronger regulating factors of BCC than the environmental conditions. Moreover, differently composed communities were different with regard to specific functions, such as enzyme activities, but maintained similar broad-scale functions, such as biomass production and respiration.


The ISME Journal | 2011

Function-specific response to depletion of microbial diversity.

Hannes Peter; Sara Beier; Stefan Bertilsson; Eva S. Lindström; Silke Langenheder; Lars J. Tranvik

Recent meta-analyses suggest that ecosystem functioning increases with biodiversity, but contradictory results have been presented for some microbial functions. Moreover, observations of only one function underestimate the functional role of diversity because of species-specific trade-offs in the ability to carry out different functions. We examined multiple functions in batch cultures of natural freshwater bacterial communities with different richness, achieved by a dilution-to-extinction approach. Community composition was assessed by molecular fingerprinting of 16S rRNA and chitinase genes, representing the total community and a trait characteristic for a functional group, respectively. Richness was positively related to abundance and biomass, negatively correlated to cell volumes and unrelated to maximum intrinsic growth rate. The response of chitin and cellulose degradation rates depended on the presence of a single phylotype. We suggest that species identity and community composition rather than richness matters for specific microbial processes.


Ecology | 2007

The role of environmental and spatial factors for the composition of aquatic bacterial communities.

Silke Langenheder; Henrik Ragnarsson

This study investigates the importance of local vs. spatial factors on bacterial community composition of 35 rock pools at the Baltic Sea coast. The pools were located in five distinct spatial clusters over a total scale of <500 m and differed widely in terms of water chemistry. To determine the fractions of the variance in bacterial community composition (BCC) between rock pools that are explained by local environmental vs. spatial factors, a variance partitioning procedure using partial canonical correspondence analysis was performed. Three environmental variables (salinity, chlorophyll a concentration, and water color) had a significant effect on BCC, irrespective of the spatial location of the pools. Vice versa, there was a significant effect of spatial factors on BCC irrespective of any of the environmental factors included in this study. Hence, the patchy spatial distribution of the pools was partly reflected in the composition of the bacterial communities in the pools, which might be caused by congruent colonization events of adjacent pools, such as simultaneous seaspray inputs or direct exchange of bacteria via connecting rivulets. This study shows that the composition of planktonic bacteria can show provincialism at small spatial scales, which is likely to be caused by environmental conditions as well as historical events.


PLOS ONE | 2010

Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity

Silke Langenheder; Mark T. Bulling; Martin Solan; James I. Prosser

Background With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Methodology/Principal Findings Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Conclusions/Significance Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning.

Collaboration


Dive into the Silke Langenheder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stina Drakare

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge