Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silke Oeljeklaus is active.

Publication


Featured researches published by Silke Oeljeklaus.


Molecular & Cellular Proteomics | 2011

Genome-wide Characterization of miR-34a Induced Changes in Protein and mRNA Expression by a Combined Pulsed SILAC and Microarray Analysis

Markus Kaller; Sven-Thorsten Liffers; Silke Oeljeklaus; Katja Kuhlmann; Simone Röh; Reinhard Hoffmann; Bettina Warscheid; Heiko Hermeking

The gene encoding the miR-34a microRNA is a transcriptional target of the p53 tumor suppressor protein and subject to epigenetic inactivation in colorectal cancer and numerous other tumor types. Here, we combined pulsed SILAC (pSILAC) and microarray analyses to identify miR-34a-induced changes in protein and mRNA expression. pSILAC allowed to quantify the de novo protein synthesis of 1206 proteins after activation of a conditional miR-34a allele in a colorectal cancer cell line. ∼19% of the detected proteins were differentially regulated, with 113 proteins being down- and 115 up-regulated. The proteins with a miR-34a seed-matching-sequence in the 3′-untranslated region (UTR) of the corresponding mRNA showed a clear bias toward translational repression. Proteins involved in DNA replication, e.g. the MCM proteins, and cell proliferation, were over-represented among indirectly down-regulated proteins lacking a miR-34a seed-match. The decrease in de novo protein synthesis of direct miR-34a targets correlated with reduced levels of the corresponding mRNA in most cases, indicating an interdependence of both types of regulation. In addition, 43 mRNAs encoding proteins not detected by pSILAC were down-regulated after miR-34a expression and contained miR-34a seed-matches. The direct regulation of selected miR-34a target-mRNAs was confirmed using reporter assays. Via down-regulation of the proteins encoded by these mRNAs miR-34a presumably inhibits glycolysis (LDHA), WNT-signaling (LEF1), invasion/migration (AXL) and lipid metabolism (ACSL1, ACSL4). Furthermore, miR-34a may activate p53 by inhibiting its acetylation (MTA2, HDAC1) and degradation (YY1). In summary, miR-34a presumably participates in multiple tumor suppressive pathways by directly and indirectly suppressing the expression of numerous, critical proteins.


Nature | 2015

Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol

Lidia Wrobel; Ulrike Topf; Piotr Bragoszewski; Sebastian Wiese; Silke Oeljeklaus; Aksana Varabyova; Maciej Lirski; Piotr Chroscicki; Seweryn Mroczek; Elzbieta Januszewicz; Andrzej Dziembowski; Marta Koblowska; Bettina Warscheid; Agnieszka Chacinska

Most of the mitochondrial proteome originates from nuclear genes and is transported into the mitochondria after synthesis in the cytosol. Complex machineries which maintain the specificity of protein import and sorting include the TIM23 translocase responsible for the transfer of precursor proteins into the matrix, and the mitochondrial intermembrane space import and assembly (MIA) machinery required for the biogenesis of intermembrane space proteins. Dysfunction of mitochondrial protein sorting pathways results in diminishing specific substrate proteins, followed by systemic pathology of the organelle and organismal death. The cellular responses caused by accumulation of mitochondrial precursor proteins in the cytosol are mainly unknown. Here we present a comprehensive picture of the changes in the cellular transcriptome and proteome in response to a mitochondrial import defect and precursor over-accumulation stress. Pathways were identified that protect the cell against mitochondrial biogenesis defects by inhibiting protein synthesis and by activation of the proteasome, a major machine for cellular protein clearance. Proteasomal activity is modulated in proportion to the quantity of mislocalized mitochondrial precursor proteins in the cytosol. We propose that this type of unfolded protein response activated by mistargeting of proteins (UPRam) is beneficial for the cells. UPRam provides a means for buffering the consequences of physiological slowdown in mitochondrial protein import and for counteracting pathologies that are caused or contributed by mitochondrial dysfunction.


Journal of Molecular Biology | 2011

Composition and topology of the endoplasmic reticulum-mitochondria encounter structure.

David A. Stroud; Silke Oeljeklaus; Sebastian Wiese; Maria Bohnert; Urs Lewandrowski; Albert Sickmann; Bernard Guiard; Martin van der Laan; Bettina Warscheid; Nils Wiedemann

Eukaryotic cells contain multiple organelles, which are functionally and structurally interconnected. The endoplasmic reticulum-mitochondria encounter structure (ERMES) forms a junction between mitochondria and the endoplasmic reticulum (ER). Four ERMES proteins are known in yeast, the ER-anchored protein Mmm1 and three mitochondria-associated proteins, Mdm10, Mdm12 and Mdm34, with functions related to mitochondrial morphology and protein biogenesis. We mapped the glycosylation sites of ERMES and demonstrate that three asparagine residues in the N‑terminal domain of Mmm1 are glycosylated. While the glycosylation is dispensable, the cytosolic C‑terminal domain of Mmm1 that connects to the Mdm proteins is required for Mmm1 function. To analyze the composition of ERMES, we determined the subunits by quantitative mass spectrometry. We identified the calcium-binding GTPase Gem1 as a new ERMES subunit, revealing that ERMES is composed of five genuine subunits. Taken together, ERMES represents a platform that integrates components with functions in formation of ER-mitochondria junctions, maintenance of mitochondrial morphology, protein biogenesis and calcium binding.


Molecular & Cellular Proteomics | 2008

Study of Early Leaf Senescence in Arabidopsis thaliana by Quantitative Proteomics Using Reciprocal 14N/15N Labeling and Difference Gel Electrophoresis

Romano Hebeler; Silke Oeljeklaus; Kai A. Reidegeld; Martin Eisenacher; Christian Stephan; Barbara Sitek; Kai Stühler; Helmut E. Meyer; Marcel J. G. Sturre; Paul P. Dijkwel; Bettina Warscheid

Leaf senescence represents the final stage of leaf development and is associated with fundamental changes on the level of the proteome. For the quantitative analysis of changes in protein abundance related to early leaf senescence, we designed an elaborate double and reverse labeling strategy simultaneously employing fluorescent two-dimensional DIGE as well as metabolic 15N labeling followed by MS. Reciprocal 14N/15N labeling of entire Arabidopsis thaliana plants showed that full incorporation of 15N into the proteins of the plant did not cause any adverse effects on development and protein expression. A direct comparison of DIGE and 15N labeling combined with MS showed that results obtained by both quantification methods correlated well for proteins showing low to moderate regulation factors. Nano HPLC/ESI-MS/MS analysis of 21 protein spots that consistently exhibited abundance differences in nine biological replicates based on both DIGE and MS resulted in the identification of 13 distinct proteins and protein subunits that showed significant regulation in Arabidopsis mutant plants displaying advanced leaf senescence. Ribulose 1,5-bisphosphate carboxylase/oxygenase large and three of its four small subunits were found to be down-regulated, which reflects the degradation of the photosynthetic machinery during leaf senescence. Among the proteins showing higher abundance in mutant plants were several members of the glutathione S-transferase family class phi and quinone reductase. Up-regulation of these proteins fits well into the context of leaf senescence since they are generally involved in the protection of plant cells against reactive oxygen species which are increasingly generated by lipid degradation during leaf senescence. With the exception of one glutathione S-transferase isoform, none of these proteins has been linked to leaf senescence before.


Molecular Cell | 2011

Dual Function of Sdh3 in the Respiratory Chain and TIM22 Protein Translocase of the Mitochondrial Inner Membrane

Natalia Gebert; Michael Gebert; Silke Oeljeklaus; Karina von der Malsburg; David A. Stroud; Bogusz Kulawiak; Christophe Wirth; René P. Zahedi; Pavel Dolezal; Sebastian Wiese; Oliver Simon; Agnes Schulze-Specking; Kaye N. Truscott; Albert Sickmann; Peter Rehling; Bernard Guiard; Carola Hunte; Bettina Warscheid; Martin van der Laan; Nikolaus Pfanner; Nils Wiedemann

The mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II. We show by genetic and biochemical approaches that Sdh3 also plays specific functions in the TIM22 complex. Sdh3 forms a subcomplex with Tim18 and is involved in biogenesis and assembly of the membrane-integral subunits of the TIM22 complex. We conclude that the assembly of Sdh3 with different partner proteins, Sdh4 and Tim18, recruits it to two different mitochondrial membrane complexes with functions in bioenergetics and protein biogenesis, respectively.


Journal of Molecular Biology | 2012

Role of MINOS in Mitochondrial Membrane Architecture: Cristae Morphology and Outer Membrane Interactions Differentially Depend on Mitofilin Domains

Ralf M. Zerbes; Maria Bohnert; David A. Stroud; Karina von der Malsburg; Anita M. Kram; Silke Oeljeklaus; Bettina Warscheid; Thomas Becker; Nils Wiedemann; Marten Veenhuis; Ida J. van der Klei; Nikolaus Pfanner; Martin van der Laan

The mitochondrial inner membrane contains a large protein complex crucial for membrane architecture, the mitochondrial inner membrane organizing system (MINOS). MINOS is required for keeping cristae membranes attached to the inner boundary membrane via crista junctions and interacts with protein complexes of the mitochondrial outer membrane. To study if outer membrane interactions and maintenance of cristae morphology are directly coupled, we generated mutant forms of mitofilin/Fcj1 (formation of crista junction protein 1), a core component of MINOS. Mitofilin consists of a transmembrane anchor in the inner membrane and intermembrane space domains, including a coiled-coil domain and a conserved C-terminal domain. Deletion of the C-terminal domain disrupted the MINOS complex and led to release of cristae membranes from the inner boundary membrane, whereas the interaction of mitofilin with the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM) were enhanced. Deletion of the coiled-coil domain also disturbed the MINOS complex and cristae morphology; however, the interactions of mitofilin with TOM and SAM were differentially affected. Finally, deletion of both intermembrane space domains disturbed MINOS integrity as well as interactions with TOM and SAM. Thus, the intermembrane space domains of mitofilin play distinct roles in interactions with outer membrane complexes and maintenance of MINOS and cristae morphology, demonstrating that MINOS contacts to TOM and SAM are not sufficient for the maintenance of inner membrane architecture.


Current Biology | 2011

Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin

Mascha Pusnik; Oliver Schmidt; Andrew J. Perry; Silke Oeljeklaus; Moritz Niemann; Bettina Warscheid; Trevor Lithgow; Chris Meisinger; André Schneider

Mitochondria are found in all eukaryotic cells and derive from a bacterial endosymbiont [1, 2]. The evolution of a protein import system was a prerequisite for the conversion of the endosymbiont into a true organelle. Tom40, the essential component of the protein translocase of the outer membrane, is conserved in mitochondria of almost all eukaryotes but lacks bacterial orthologs [3-6]. It serves as the gateway through which all mitochondrial proteins are imported. The parasitic protozoa Trypanosoma brucei and its relatives do not have a Tom40-like protein, which raises the question of how proteins are imported by their mitochondria [7, 8]. Using a combination of bioinformatics and in vivo and in vitro studies, we have discovered that T. brucei likely employs a different import channel, termed ATOM (archaic translocase of the outer mitochondrial membrane). ATOM mediates the import of nuclear-encoded proteins into mitochondria and is essential for viability of trypanosomes. It is not related to Tom40 but is instead an ortholog of a subgroup of the Omp85 protein superfamily that is involved in membrane translocation and insertion of bacterial outer membrane proteins [9]. This suggests that the protein import channel in trypanosomes is a relic of an archaic protein transport system that was operational in the ancestor of all eukaryotes.


Plant Biology | 2008

Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants

Hai-Chun Jing; Romano Hebeler; Silke Oeljeklaus; Barbara Sitek; K. Stuehler; Helmut E. Meyer; Marcel J. G. Sturre; Jacob Hille; Bettina Warscheid; Paul P. Dijkwel; Kai Stühler

Reactive oxygen species (ROS) are the inevitable by-products of essential cellular metabolic and physiological activities. Plants have developed sophisticated gene networks of ROS generation and scavenging systems. However, ROS regulation is still poorly understood. Here, we report that mutations in the Arabidopsis CPR5/OLD1 gene may cause early senescence through deregulation of the cellular redox balance. Genetic analysis showed that blocking stress-related hormonal signalling pathways, such as ethylene, salicylic acid, jasmonic acid, abscisic acid and sugar, did not affect premature cell death and leaf senescence. We took a bioinformatics approach and analysed publicly available transcriptome data of presymptomatic cpr5/old1 mutants. The results demonstrate that many genes in the ROS gene network show at least fivefold increases in transcripts in comparison with those of wild-type plants, suggesting that presymptomatic cpr5/old1 mutants are in a state of high-cellular oxidative stress. This was further confirmed by a comparative, relative quantitative proteomics study of Arabidopsis wild-type and cpr5/old1 mutant plants, which demonstrated that several Phi family members of glutathione s-transferases significantly increased in abundance. In summary, our genetic, transcriptomic and relative quantitative proteomics analyses indicate that CPR5 plays a central role in regulating redox balance in Arabidopsis.


Cell | 2013

Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation

Jian Qiu; Lena Sophie Wenz; Ralf M. Zerbes; Silke Oeljeklaus; Maria Bohnert; David A. Stroud; Christophe Wirth; Lars Ellenrieder; Nicolas Thornton; Stephan Kutik; Sebastian Wiese; Agnes Schulze-Specking; Nicole Zufall; Agnieszka Chacinska; Bernard Guiard; Carola Hunte; Bettina Warscheid; Martin van der Laan; Nikolaus Pfanner; Nils Wiedemann; Thomas Becker

The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of β-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the β-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring β-barrel formation in vivo and in organello and demonstrated that the β-barrel was formed and membrane inserted while the precursor was bound to SAM. β-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.


Molecular Biology of the Cell | 2012

Role of MINOS in protein biogenesis of the mitochondrial outer membrane

Maria Bohnert; Lena-Sophie Wenz; Ralf M. Zerbes; Susanne E. Horvath; David A. Stroud; Karina von der Malsburg; Judith M. Müller; Silke Oeljeklaus; Inge Perschil; Bettina Warscheid; Agnieszka Chacinska; Marten Veenhuis; Ida J. van der Klei; Günther Daum; Nils Wiedemann; Thomas Becker; Nikolaus Pfanner; Martin van der Laan

The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. We report that MINOS independently interacts with both preprotein translocases of the outer mitochondrial membrane and plays a role in the biogenesis of β-barrel proteins of the outer membrane.

Collaboration


Dive into the Silke Oeljeklaus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge