Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Beatriz Boscardin is active.

Publication


Featured researches published by Silvia Beatriz Boscardin.


Nature | 2006

The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites

Kota Arun Kumar; Gen Ichiro Sano; Silvia Beatriz Boscardin; Ruth S. Nussenzweig; Michel C. Nussenzweig; Fidel Zavala; Victor Nussenzweig

Malaria infection starts when mosquitoes inject sporozoites into the skin. The parasites enter the blood stream and make their way to the liver where they develop into the exo-erythrocytic forms (EEFs). Immunization with irradiated sporozoites (IrSp) leads to robust protection against malaria infection in rodents, monkeys and humans by eliciting antibodies to circumsporozoite protein (CS) that inhibit sporozoite infectivity, and T cells that destroy the EEFs. To study the role of non-CS antigens in protection, we produced CS transgenic mice that were tolerant to CS T-cell epitopes. Here we show that in the absence of T-cell-dependent immune responses to CS, protection induced by immunization with two doses of IrSp was greatly reduced. Thus, although hundreds of other Plasmodium genes are expressed in sporozoites and EEFs, CS is a dominant protective antigen. Nevertheless, sterile immunity could be obtained by immunization of CS transgenics with three doses of IrSp.


Journal of Experimental Medicine | 2006

Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses

Silvia Beatriz Boscardin; Julius C R Hafalla; Revati F. Masilamani; Alice O. Kamphorst; Henry Zebroski; Urvashi Rai; Alexandre Morrot; Fidel Zavala; Ralph M. Steinman; Ruth S. Nussenzweig; Michel C. Nussenzweig

Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses.


Journal of Experimental Medicine | 2009

Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves

Jaehoon Choi; Yoonkyung Do; Cheolho Cheong; Hyein Koh; Silvia Beatriz Boscardin; Yong-Seok Oh; Leonia Bozzacco; Christine Trumpfheller; Chae Gyu Park; Ralph M. Steinman

Presumptive dendritic cells (DCs) bearing the CD11c integrin and other markers have previously been identified in normal mouse and human aorta. We used CD11c promoter–enhanced yellow fluorescent protein (EYFP) transgenic mice to visualize aortic DCs and study their antigen-presenting capacity. Stellate EYFP+ cells were readily identified in the aorta and could be double labeled with antibodies to CD11c and antigen-presenting major histocompatability complex (MHC) II products. The DCs proved to be particularly abundant in the cardiac valves and aortic sinus. In all aortic locations, the CD11c+ cells localized to the subintimal space with occasional processes probing the vascular lumen. Aortic DCs expressed little CD40 but expressed low levels of CD1d, CD80, and CD86. In studies of antigen presentation, DCs selected on the basis of EYFP expression or binding of anti-CD11c antibody were as effective as DCs similarly selected from the spleen. In particular, the aortic DCs could cross-present two different protein antigens on MHC class I to CD8+ TCR transgenic T cells. In addition, after intravenous injection, aortic DCs could capture anti-CD11c antibody and cross-present ovalbumin to T cells. These results indicate that bona fide DCs are a constituent of the normal aorta and cardiac valves.


Vaccine | 2010

Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in non human primates

Kavita Tewari; Barbara J. Flynn; Silvia Beatriz Boscardin; Kathrin Kastenmueller; Andres M. Salazar; Charles A. Anderson; Velmurugan Soundarapandian; Adriana Ahumada; Tibor Keler; Stephen L. Hoffman; Michel C. Nussenzweig; Ralph M. Steinman; Robert A. Seder

Development of a fully effective vaccine against the pre-erythrocytic stage of malaria infection will likely require induction of both humoral and cellular immune responses. Protein based vaccines can elicit such broad-based immunity depending on the adjuvant and how the protein is formulated. Here to assess these variables, non human primates (NHP) were immunized three times with Plasmodium falciparum (Pf) circumsporozoite protein (CSP) or CSP cloned into MG38, a monoclonal antibody that targets DEC-205 (αDEC-CSP), an endocytic receptor on dendritic cells (DCs). Both vaccines were administered with or without poly(I:C) as adjuvant. Following three immunizations, the magnitude and quality of cytokine secreting CD4+ T cells were comparable between CSP+poly(I:C) and αDEC-CSP+poly(I:C) groups with both regimens eliciting multi-functional cytokine responses. However, NHP immunized with CSP+poly(I:C) had significantly higher serum titers of CSP-specific IgG antibodies and indirect immunofluorescent antibody (IFA) titers against Pf sporozoites. Furthermore, sera from both CSP or αDEC-CSP+poly(I:C) immunized animals limited sporozoite invasion of a hepatocyte cell line (HC04) in vitro. To determine whether CSP-specific responses could be enhanced, all NHP primed with CSP or αDEC-CSP+poly(I:C) were boosted with a single dose of 150,000 irradiated Pf sporozoites (PfSPZ) intravenously. Remarkably, boosting had no effect on the CSP-specific immunity. Finally, immunization with CSP+poly-ICLC reduced malaria parasite burden in the liver in an experimental mouse model. Taken together, these data showing that poly(I:C) is an effective adjuvant for inducing potent antibody and Th1 immunity with CSP based vaccines offers a potential alternative to the existing protein based pre-erythrocytic vaccines.


Infection and Immunity | 2005

CD8+-T-Cell-Dependent Control of Trypanosoma cruzi Infection in a Highly Susceptible Mouse Strain after Immunization with Recombinant Proteins Based on Amastigote Surface Protein 2

Adriano F. Araújo; Bruna Cunha de Alencar; José Ronnie Vasconcelos; Meire I. Hiyane; Claudio R. F. Marinho; Marcus L. O. Penido; Silvia Beatriz Boscardin; Daniel F. Hoft; Ricardo T. Gazzinelli; Mauricio M. Rodrigues

ABSTRACT We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8+ T cells, but not CD4+ T cells, and was associated with the presence of CD8+ T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8+-T-cell-dependent protective immunity against T. cruzi infection.


Infection and Immunity | 2003

Immunization with cDNA Expressed by Amastigotes of Trypanosoma cruzi Elicits Protective Immune Response against Experimental Infection

Silvia Beatriz Boscardin; Sheila S. Kinoshita; Adriana E. Fujimura; Mauricio M. Rodrigues

ABSTRACT Immunization of mice with plasmids containing Trypanosoma cruzi genes induced specific antibodies, CD4+ Th1 and CD8+ Tc1 cells, and protective immunity against infection. In most cases, plasmids used for DNA vaccination contained genes encoding antigens expressed by trypomastigotes, the nonreplicative forms of the parasite. In this study, we explored the possibility of using genes expressed by amastigotes, the form of the parasite which replicates inside host cells, for experimental DNA vaccination. For that purpose, we selected a gene related to the amastigote surface protein 2 (ASP-2), an antigen recognized by antibodies and T cells from infected mice and humans, for our study. Using primers specific for the asp-2 gene, four distinct groups of genes were amplified from cDNA from amastigotes of the Y strain of T. cruzi. At the nucleotide level, they shared 82.3 to 89.9% identity with the previously described asp-2 gene. A gene named clone 9 presented the highest degree of identity with the asp-2 gene and was selected for immunological studies. Polyclonal antisera raised against the C terminus of the recombinant protein expressed by the clone 9 gene reacted with an antigen of approximately 83 kDa expressed in amastigotes of T. cruzi. Immunization of BALB/c mice with eukaryotic expression plasmids containing the clone 9 gene elicited specific antibodies and CD4+ T-cell-dependent gamma interferon secretion. Upon challenge with trypomastigotes, mice immunized with plasmids harboring the clone 9 gene displayed reduced parasitemia and survived lethal infection. We concluded that amastigote cDNA is an interesting source of antigens that can be used for immunological studies, as well as for vaccine development.


Infection and Immunity | 2010

CD4+ CD25+ Foxp3+ regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: do different parasite species elicit similar host responses?

Raquel M. Gonçalves; Karina Carvalho Salmazi; Bianca A. N. Santos; Melissa S. Bastos; Sandra C. Rocha; Silvia Beatriz Boscardin; Ariel Mariano Silber; Esper G. Kallas; Marcelo U. Ferreira; Kézia K.G. Scopel

ABSTRACT Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4+ CD25+ Foxp3+ Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123+), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-α) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and long-lasting protective immunity to malaria.


Anais Da Academia Brasileira De Ciencias | 2003

Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines

Mauricio M. Rodrigues; Silvia Beatriz Boscardin; José Ronnie Vasconcelos; Meire I. Hiyane; Gerson Salay; Irene S. Soares

Obligatory intracellular parasites such as Plasmodium sp, Trypanosoma cruzi, Toxoplasma gondii and Leishmania sp are responsible for the infection of hundreds of millions of individuals every year. These parasites can deliver antigens to the host cell cytoplasm that are presented through MHC class I molecules to protective CD8 T cells. The in vivo priming conditions of specific CD8 T cells during natural infection are largely unknown and remain as an area that has been poorly explored. The antiparasitic mechanisms mediated by CD8 T cells include both interferon-gamma-dependent and -independent pathways. The fact that CD8 T cells are potent inhibitors of parasitic development prompted many investigators to explore whether induction of these T cells can be a feasible strategy for the development of effective subunit vaccines against these parasitic diseases. Studies performed on experimental models supported the hypothesis that CD8 T cells induced by recombinant viral vectors or DNA vaccines could serve as the basis for human vaccination. Regimens of immunization consisting of two different vectors (heterologous prime-boost) are much more efficient in terms of expansion of protective CD8 T lymphocytes than immunization with a single vector. The results obtained using experimental models have led to clinical vaccination trials that are currently underway.


Vaccine | 2010

CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein

Catarina J.M. Braga; Liliana M. Massis; Maria E. Sbrogio-Almeida; Bruna C.G. Alencar; Daniel Y. Bargieri; Silvia Beatriz Boscardin; Mauricio M. Rodrigues; Luís Carlos de Souza Ferreira

Salmonella flagellin, the flagellum structural subunit, has received particular interest as a vaccine adjuvant conferring enhanced immunogenity to soluble proteins or peptides, both for activation of antibody and cellular immune responses. In the present study, we evaluated the Salmonella enterica FliCd flagellin as a T cell vaccine adjuvant using as model the 9-mer (SYVPSAEQI) synthetic H2(d)-restricted CD8(+) T cell-specific epitope (CS(280-288)) derived from the Plasmodium yoelii circumsporozoite (CS) protein. The FliCd adjuvant effects were determined under two different conditions: (i) as recombinant flagella, expressed by orally delivered live S. Dublin vaccine strains expressing the target CS(280-288) peptide fused at the central hypervariable domain, and (ii) as purified protein in acellular vaccines in which flagellin was administered to mice either as a recombinant protein fused or admixed with the target CS(280-288) peptide. The results showed that CS(280-288)-specific cytotoxic CD8(+) T cells were primed when BALB/c mice were orally inoculated with the expressing the CS(280-288) epitope S. Dublin vaccine strain. In contrast, mice immunized with purified FliCd admixed with the CS(280-288) peptide and, to a lesser extent, fused with the target peptide developed specific cytotoxic CD8(+) T cell responses without the need of a heterologous booster immunization. The CD8(+) T cell adjuvant effects of flagellin, either fused or not with the target peptide, correlated with the in vivo activation of CD11c(+) dendritic cells. Taken together, the present results demonstrate that Salmonella flagellins are flexible adjuvant and induce adaptative immune responses when administered by different routes or vaccine formulations.


Immunology Letters | 2000

CD4 Th1 but not Th2 clones efficiently activate macrophages to eliminate Trypanosoma cruzi through a nitric oxide dependent mechanism.

Mauricio M. Rodrigues; Marcelo Ribeirão; Silvia Beatriz Boscardin

We have recently generated CD4 clones from BALB/c mice immunized with a plasmid DNA containing the gene encoding for the catalytic domain of trans-sialidase, an important enzyme expressed on the surface of Trypanosoma cruzi trypomastigotes. These clones allowed us to study in vitro the interaction between T cells and T. cruzi-infected macrophages. A cytotoxic CD4 clone of the Th1 type effectively activated macrophages to kill intracellular amastigote forms of T. cruzi. In contrast, CD4 Th2-like clones were much less efficient, being unable to activate macrophages to significantly reduce parasite development. We found that the anti-parasitic activity of Th1 cells was completely suppressed by the presence of nitric oxide synthase inhibitors. Also, we observed that anti-IFN-gamma antibodies significantly inhibited the anti-parasitic activity of these cells. We conclude that trypomastigote-specific Th1 cells activate macrophages to kill intracellular amastigotes of T. cruzi by a mechanism exclusively dependent on the induction of nitric oxide synthesis.

Collaboration


Dive into the Silvia Beatriz Boscardin's collaboration.

Top Co-Authors

Avatar

Mauricio M. Rodrigues

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Santoro Rosa

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meire I. Hiyane

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge