Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Caccia is active.

Publication


Featured researches published by Silvia Caccia.


PLOS ONE | 2010

Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

Silvia Caccia; Carmen Sara Hernández-Rodríguez; R. J. Mahon; Sharon Downes; William James; Nadine Bautsoens; Jeroen Van Rie; Juan Ferré

Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. Methodology/Principal Findings Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. Conclusion/Significance This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the field.


PLOS ONE | 2010

Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua.

Patricia Hernández-Martínez; Gloria Navarro-Cerrillo; Silvia Caccia; Ruud A. de Maagd; William J. Moar; Juan Ferré; Baltasar Escriche; Salvador Herrero

Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae.


Applied and Environmental Microbiology | 2012

Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen

Silvia Caccia; William J. Moar; Jayadevi Chandrashekhar; Cris Oppert; Konasale J. Anilkumar; Juan Luis Jurat-Fuentes; Juan Ferré

ABSTRACT Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

Silvia Caccia; Ilaria Di Lelio; Antonietta La Storia; Adriana Marinelli; Paola Varricchio; Eleonora Franzetti; Núria Banyuls; Gianluca Tettamanti; Morena Casartelli; Barbara Giordana; Juan Ferré; Silvia Gigliotti; Danilo Ercolini; Francesco Pennacchio

Significance Bacillus thuringiensis and its toxins are widely used for insect control. Notwithstanding the remarkable importance of this insect pathogen, its killing mechanism has yet to be fully elucidated. Here we show that the microbiota resident in the host midgut triggers a lethal septicemia. The infection process is enhanced by reducing the host immune response and its control on replication of midgut bacteria invading the body cavity through toxin-induced epithelial lesions. The experimental approach used, leaving the midgut microbiota unaltered, allows identification of the bacterial species switching from resident symbionts to pathogens and sets the stage for developing new insect biocontrol technologies based on host immunosuppression as a strategy to enhance the impact of natural antagonists. Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host.


Journal of Insect Physiology | 2012

Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes

Silvia Caccia; Annalisa Grimaldi; Morena Casartelli; Patrizia Falabella; Magda de Eguileor; Francesco Pennacchio; Barbara Giordana

Aphidius ervi (Hymenoptera, Braconidae) is an endophagous parasitoid of various aphid species, including Acyrthosiphon pisum (Homoptera, Aphididae), the model host used in the present study. Parasitized hosts show a marked increase of their nutritional suitability for the developing parasitoid larvae. This alteration of the biochemical and metabolic profile is due to a castration process mediated by the combined action of the venom, injected at the oviposition, and of the teratocytes, cells deriving from the dissociation of the embryonic membrane. Teratocytes produce and release in the host haemocoel two parasitism-specific proteins, which are of crucial importance for the development of their sister larvae. One of the proteins is a fatty acid binding protein (Ae-FABP), which shows a high affinity for C14-C18 saturated fatty acids (FAs) and for oleic and arachidonic acids. To better define the possible nutritional role of this protein, we have studied its immunolocalization profile in vivo and the impact on FA uptake by the epidermal and midgut epithelia of A. ervi larvae. During the exponential growth of A. ervi larvae, Ae-FABP is distributed around discrete lipid particles, which are abundantly present in the haemocoel of parasitized host aphids and in the midgut lumen of parasitoid larvae. Moreover, a strong immunodetection signal is evident on the surface of the two larval epithelia involved in nutrient absorption: the parasitoid midgut epithelium and the external epidermal layer. These two epithelia can effectively absorb radiolabelled myristic acid, but the FA transport rates are not affected by the presence in the medium of Ae-FABP. The protein appears to act essentially as a vector in the host haemolymph, transferring FAs from the digestion sites of host lipids to the growing parasitoid larvae. These data indicate that the proteins produced by A. ervi teratocytes may play complementary roles in the nutritional exploitation of the host.


Cell and Tissue Research | 2015

The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium

Eleonora Franzetti; Davide Romanelli; Silvia Caccia; Silvia Cappellozza; Terenzio Congiu; Muthukumaran Rajagopalan; Annalisa Grimaldi; Magda de Eguileor; Morena Casartelli; Gianluca Tettamanti

The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.


Pest Management Science | 2016

Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera

Francesca Berini; Silvia Caccia; Eleonora Franzetti; Terenzio Congiu; Flavia Marinelli; Morena Casartelli; Gianluca Tettamanti

BACKGROUND The peritrophic matrix (PM) is formed by a network of chitin fibrils associated with proteins, glycoproteins and proteoglycans that lines the insect midgut. It is a physical barrier involved in digestion processes, and protects the midgut epithelium from food abrasion, pathogen infections and toxic materials. Given its fundamental role in insect physiology, the PM represents an excellent target for pest control strategies. Although a number of viral, bacterial and insect chitinolytic enzymes affecting PM integrity have already been tested, exploitation of fungal chitinases has been almost neglected. Fungal chitinases, already in use as fungal phytopathogen biocontrol agents, are known to attack the insect cuticle, but their action on the insect gut needs to be better investigated. RESULTS In the present paper, we performed a biochemical characterisation of a commercial mixture of chitinolytic enzymes derived from Trichoderma viride and analysed its in vitro and in vivo effects on the PM of the silkworm Bombyx mori, a model system among Lepidoptera. We found that these enzymes have significant in vitro effects on the structure and permeability of the PM of this insect. A bioassay supported these results and showed that the oral administration of the mixture causes PM alterations, leading to adverse consequences on larval growth and development, negatively affecting pupal weight and even inducing mortality. CONCLUSIONS This study provides an integrated experimental approach to evaluate the effects of fungal chitinases on Lepidoptera. The encouraging results obtained herein make us confident about the possible use of fungal chitinases to control lepidopteran pests.


The Journal of Membrane Biology | 2006

Leucine Transport Is Affected by Bacillus thuringiensis Cry1 Toxins in Brush Border Membrane Vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) Midgut

M. Giovanna Leonardi; Silvia Caccia; Joel González-Cabrera; Juan Ferré; Barbara Giordana

The pore-forming activity of Cry1Ab, Cry1Fa and Cry1Ca toxins and their interaction with leucine transport mediated by the K+/leucine cotransporter were studied in brush border membrane vesicles (BBMVs) isolated from the midgut of Ostrinia nubilalis and Sesamia nonagrioides. In both species, as in other Lepidoptera, leucine uptake by BBMVs can take place in the absence of cations, but it can also be driven by a K+ gradient. Experiments with the voltage-sensitive fluorescent dye 3,3′-diethylthiacarbocyanine iodide proved that Cry1Ab, a Bacillus thuringiensis toxin active in vivo, enhanced the membrane permeability to potassium in O. nubilalis BBMVs. This result is in agreement with similar effects observed in S. nonagrioides BBMV incubated with various Cry1 toxins active in vivo. The effect of the above toxins was tested on the initial rate of 0.1 mM leucine influx. Instead of an increase in leucine influx, a reduction was observed with the Cry1 toxins active in vivo. Cry1Ab and Cry1Fa, but not the inactive toxin Cry1Da, inhibited in a dose-dependent manner leucine uptake both in the absence and in the presence of a K+ gradient, a clear indication that their effect is independent of the channel formed by the toxins and that this effect is exerted directly on the amino acid transport system.


Journal of Insect Physiology | 2010

Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera).

Luisa Fiandra; Silvia Caccia; Barbara Giordana; Morena Casartelli

The larval midgut of the hymenopteran parasitoid Aphidius ervi accomplishes a large transport of nutrients from the lumen to the haemocoel, providing most of the organic molecules necessary for rapid insect development. l-amino acids in general, and leucine in particular, are efficiently accumulated in the larval body. We show here that the intact midgut of early 3rd instar larvae incubated in vitro can take up [(3)H]l-leucine from the basolateral side of the epithelium by transporters insensitive to the presence of monovalent cations. When the midgut is opened and the apical membrane of the absorbing epithelial cells is exposed to the medium containing radiolabelled leucine, a sodium-dependent uptake of the amino acid becomes apparent, disclosing the presence of a symport mechanism. Inhibition experiments of leucine uptake by a 100-fold excess of different amino acids, selected according to the properties of their side chain, revealed that this apical sodium-dependent mechanism is a broad spectrum transport system with a specialization for the absorption of aliphatic amino acids, that can also transfer glutamine and proline, but not phenylalanine, lysine and arginine. Altogether the experimental results obtained with intact- and open-gut preparations suggest that leucine transport across the basolateral membrane is mediated by both an uniporter and an obligatory amino acid exchange mechanism.


Journal of Invertebrate Pathology | 2012

Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein

Maissa Chakroun; Yolanda Bel; Silvia Caccia; Lobna Abdelkefi-Mesrati; Baltasar Escriche; Juan Ferré

Collaboration


Dive into the Silvia Caccia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Ferré

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Francesco Pennacchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge