Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Carvalho is active.

Publication


Featured researches published by Silvia Carvalho.


Expert Review of Molecular Diagnostics | 2008

EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy

Fernanda Milanezi; Silvia Carvalho; Fernando Schmitt

Novel cancer therapies have focused on specific molecular markers present in malignant tumors. The rationale of targeted therapy relies on the knowledge of molecular mechanisms involved in carcinogenesis and their influence in clinical outcome allied to a more specific and less toxic treatment. Activation of EGF receptor and HER2 is an important factor for initiation and progression of malignancies, including breast cancer where the status of HER2 is an essential step in the diagnostic workup; EGFR overexpression has been associated to the so-called basal-like breast carcinomas, which opens a new avenue for diagnosis and therapeutic approach in these tumors. This review will focus on mechanisms of HER2 and EGF receptor upregulation, the targeted therapies that are currently in use for these receptors, possible combined therapies, as well as the approach for molecular diagnosis from the pathologist’s point of view.


Oncogene | 2012

Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression

Fresia Pareja; Daniela Aleida Ferraro; Chanan Rubin; Hadas Cohen-Dvashi; Fan Zhang; Sebastian Aulmann; Nir Ben-Chetrit; Gur Pines; Roy Navon; Nicola Crosetto; Wolfgang J. Köstler; Silvia Carvalho; Sara Lavi; Fernando Schmitt; Ivan Dikic; Zohar Yakhini; Peter Sinn; Gordon B. Mills; Yosef Yarden

Once stimulated, the epidermal growth factor receptor (EGFR) undergoes self-phosphorylation, which, on the one hand, instigates signaling cascades, and on the other hand, recruits CBL ubiquitin ligases, which mark EGFRs for degradation. Using RNA interference screens, we identified a deubiquitinating enzyme, Cezanne-1, that opposes receptor degradation and enhances EGFR signaling. These functions require the catalytic- and ubiquitin-binding domains of Cezanne-1, and they involve physical interactions and transphosphorylation of Cezanne-1 by EGFR. In line with the ability of Cezanne-1 to augment EGF-induced growth and migration signals, the enzyme is overexpressed in breast cancer. Congruently, the corresponding gene is amplified in approximately one third of mammary tumors, and high transcript levels predict an aggressive disease course. In conclusion, deubiquitination by Cezanne-1 curtails degradation of growth factor receptors, thereby promotes oncogenic growth signals.


Journal of Clinical Pathology | 2006

HER2 evaluation using the novel rabbit monoclonal antibody SP3 and CISH in tissue microarrays of invasive breast carcinomas

Sara Ricardo; Fernanda Milanezi; Silvia Carvalho; Dina Raquel Aguilera Leitão; Fernando Schmitt

Background: Laboratory methods for HER2 assessment currently include immunohistochemical (IHC) methods (measuring protein overexpression) and fluorescence in situ hybridisation (FISH) (measuring gene amplification). The measure of HER2 protein by IHC is usually assessed by the mouse monoclonal antibody CB11, and polyclonal antibodies (Herceptest) directed against the internal portion of the receptor. Recently, chromogenic in situ hybridisation (CISH), in which HER2 is detected by a peroxidase reaction and the gene amplification can be determined by regular bright-field microscopy, has emerged as an alternative to FISH. Aims: To evaluate the status of HER2 in tissue microarrays (TMAs) of invasive breast cancer using the novel rabbit monoclonal antibody SP3 directed against the external portion of HER2, and correlate the results with CB11 and CISH. Methods: IHC was performed with two antibodies (CB11 and SP3) and CISH for HER2 in 10 TMA blocks with 190 formalin-fixed paraffin-embedded cases of invasive breast carcinomas. Results: The correlation between SP3 and CB11 was significant (p<0.001) with an agreement rate of 86.9%. When the staining pattern of the two antibodies was compared, the majority of SP3 immunostainings were assessed more easily, with a strong complete membrane staining pattern without non-specific cytoplasmic staining. There was a good correlation between SP3 and CISH (p<0.001). 23/24 SP3 3+ cases showed gene amplification, 97.3% of the cases without gene amplification were SP3 negative, and 6/7 SP3 2+ were amplified. Conclusion: The high level of agreement between SP3, a monoclonal antibody that recognises the extracellular domain of the HER2 receptor, and CB11 and CISH, shows that this novel antibody is a reliable candidate to evaluate the expression of HER2 in breast cancer.


Journal of Clinical Pathology | 2004

c-KIT and PDGFRA in breast phyllodes tumours: overexpression without mutations?

Silvia Carvalho; A O e Silva; Fernanda Milanezi; Sara Ricardo; Dina Leitão; Isabel Amendoeira; Fernando Schmitt

Aim: To study the immunoexpression and mutational status of c-KIT and PDGFRA in a series of benign and malignant phyllodes tumours of the breast. Material/methods: Nineteen phyllodes tumours (13 benign and six malignant) were analysed by immunohistochemistry for the expression of c-KIT and PDGFRA. Direct sequencing of exons 9, 11, 13, and 17 of the c-KIT gene and exons 12 and 18 of PDGFRA was performed to check the mutational status of these two genes. Results: c-KIT expression was found in 12 of the 19 cases (six of the 13 benign cases and all six malignant ones) and PDGFRA expression was seen in two of the 19 cases (one benign and one malignant case); the 2415 C>T alteration in exon 17 of the c-KIT gene was found in two cases (both benign); the intronic insertion IVS17-50insT and the 2866 G>T alteration in the coding region of exon 18 of the PDGFRA gene were also found in two cases (one malignant and one benign). However, the activating mutations described for these genes in gastrointestinal stromal tumours were not present. Conclusion: c-KIT expression is a frequent finding in phyllodes tumours, particularly in malignant cases; however, no activating mutations similar to those described for gastrointestinal stromal tumours were found. The PDGFRA does not seem to be an alternative pathway to tumour development in phyllodes tumours because neither expression nor activating mutations were noteworthy.


Science Signaling | 2015

EGF induces microRNAs that target suppressors of cell migration: miR-15b targets MTSS1 in breast cancer

Merav Kedmi; Nir Ben-Chetrit; Cindy Körner; Maicol Mancini; Noa Bossel Ben-Moshe; Mattia Lauriola; Sara Lavi; Francesca Biagioni; Silvia Carvalho; Hadas Cohen-Dvashi; Fernando Schmitt; Stefan Wiemann; Giovanni Blandino; Yosef Yarden

Growth factor–induced metastasis involves microRNA-mediated repression of a tumor suppressor. Micromanaging growth factor–induced metastasis Epidermal growth factor (EGF) stimulates cell proliferation and tumor growth in part by triggering kinase-dependent changes in gene expression. Noncoding RNAs, such as microRNAs (miRNAs), reduce gene expression by binding to protein-encoding transcripts. Kedmi et al. found that EGF stimulated migration in mammary epithelial cells and also increased the abundance of a set of miRNAs. Of these, miR-15b promoted EGF-induced migration and reduced the abundance of metastasis suppressor protein 1 (MTSS1). The expression of miR-15b was higher in aggressive tumors than in adjacent normal tissue and inversely correlated with that of MTSS1. Knockdown of MTSS1 promoted the migratory behavior and the formation of migration-associated structures in cultured cells. Low abundance of MTSS1 correlated with shorter survival in patients, and low expression of MTSS1 correlated with high expression of miR-15b in aggressive basal breast cancer tissue, suggesting that this pathway is important in breast cancer and could be targeted to reduce metastatic disease in patients. Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3′ untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor–inducible miRNAs mediate mechanisms underlying the progression of cancer.


Developmental Cell | 2009

Monoubiquitinylation Regulates Endosomal Localization of Lst2, a Negative Regulator of EGF Receptor Signaling

Yaron Mosesson; David Chetrit; Leehee Schley; Janina Berghoff; Tamar Ziv; Silvia Carvalho; Fernanda Milanezi; Arie Admon; Fernando Schmitt; Marcelo Ehrlich; Yosef Yarden

Genetic screens performed in worms identified major regulators of the epidermal growth factor receptor (EGFR) pathway, including the ubiquitin ligase Cbl/SLI-1. Here we focus on the less-characterized Lst2 protein and confirm suppression of MAPK signals. Unexpectedly, human Lst2, a monoubiquitinylated phosphoprotein, does not localize to endosomes, despite an intrinsic phosphoinositol-binding FYVE domain. By constructing an ubiquitinylation-defective mutant and an ubiquitin fusion, we conclude that endosomal localization of Lst2, along with an ability to divert incoming EGFR molecules to degradation in lysosomes, is regulated by ubiquitinylation/deubiquitinylation cycles. Consistent with bifurcating roles, Lst2 physically binds Trim3/BERP, which interacts with Hrs and a complex that biases cargo recycling. These results establish an ubiquitin-based endosomal switch of receptor sorting, functionally equivalent to the mechanism inactivating Hrs via monoubiquitinylation.


British Journal of Pharmacology | 2016

Immunotherapy of cancer: from monoclonal to oligoclonal cocktails of anti-cancer antibodies: IUPHAR Review 18.

Silvia Carvalho; Francesca Levi-Schaffer; Michael Sela; Yosef Yarden

Antibody‐based therapy of cancer employs monoclonal antibodies (mAbs) specific to soluble ligands, membrane antigens of T‐lymphocytes or proteins located at the surface of cancer cells. The latter mAbs are often combined with cytotoxic regimens, because they block survival of residual fractions of tumours that evade therapy‐induced cell death. Antibodies, along with kinase inhibitors, have become in the last decade the mainstay of oncological pharmacology. However, partial and transient responses, as well as emergence of tumour resistance, currently limit clinical application of mAbs. To overcome these hurdles, oligoclonal antibody mixtures are being tested in animal models and in clinical trials. The first homo‐combination of two mAbs, each engaging a distinct site of HER2, an oncogenic receptor tyrosine kinase (RTK), has been approved for treatment of breast cancer. Likewise, a hetero‐combination of antibodies to two distinct T‐cell antigens, PD1 and CTLA4, has been approved for treatment of melanoma. In a similar vein, additive or synergistic anti‐tumour effects observed in animal models have prompted clinical testing of hetero‐combinations of antibodies simultaneously engaging distinct RTKs. We discuss the promise of antibody cocktails reminiscent of currently used mixtures of chemotherapeutics and highlight mechanisms potentially underlying their enhanced clinical efficacy.


Nature Communications | 2014

Diurnal suppression of EGFR signalling by glucocorticoids and implications for tumour progression and treatment

Mattia Lauriola; Yehoshua Enuka; Amit Zeisel; Gabriele D'Uva; Lee Roth; Michal Sharon-Sevilla; Moshit Lindzen; Kirti Sharma; Nava Nevo; Morris E. Feldman; Silvia Carvalho; Hadas Cohen-Dvashi; Merav Kedmi; Nir Ben-Chetrit; Alon Chen; Rossella Solmi; Stefan Wiemann; Fernando Schmitt; Eytan Domany; Yosef Yarden

Signal transduction by receptor tyrosine kinases (RTKs) and nuclear receptors for steroid hormones is essential for body homeostasis, but the cross-talk between these receptor families is poorly understood. We observed that glucocorticoids inhibit signalling downstream of EGFR, an RTK. The underlying mechanism entails suppression of EGFR’s positive feedback loops and simultaneous triggering of negative feedback loops that normally restrain EGFR. Our studies in mice reveal that the regulation of EGFR’s feedback loops by glucocorticoids translates to circadian control of EGFR signalling: EGFR signals are suppressed by high glucocorticoids during the active phase (night-time in rodents), while EGFR signals are enhanced during the resting phase. Consistent with this pattern, treatment of animals bearing EGFR-driven tumours with a specific kinase inhibitor was more effective if administered during the resting phase of the day, when glucocorticoids are low. These findings support a circadian clock-based paradigm in cancer therapy.


Science Signaling | 2015

Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer.

Nir Ben-Chetrit; David Chetrit; Roslin Russell; Cindy Körner; Maicol Mancini; Ali Abdul-Hai; Tomer Itkin; Silvia Carvalho; Hadas Cohen-Dvashi; Wolfgang J. Koestler; Kirti Shukla; Moshit Lindzen; Merav Kedmi; Mattia Lauriola; Ziv Shulman; Haim M. Barr; Dalia Seger; Daniela Aleida Ferraro; Fresia Pareja; Hava Gil-Henn; Tsvee Lapidot; Ronen Alon; Fernanda Milanezi; Marc Symons; Rotem Ben-Hamo; Sol Efroni; Fernando Schmitt; Stefan Wiemann; Carlos Caldas; Marcelo Ehrlich

Small-molecule inhibitors of the lipid phosphatase synaptojanin 2 may prevent breast cancer metastasis. Blocking Receptor Recycling to Prevent Metastasis Blocking cancer cell metastasis can prolong patient survival. Ben-Chetrit et al. found that many patients with aggressive breast cancer have tumors with increased expression of SYNJ2, which encodes the lipid phosphatase synaptojanin 2. In cultured breast cancer cells, epidermal growth factor (EGF) triggered the localization of SYNJ2 to lamellipodia and invadopodia, which are cellular protrusions associated with invasive behavior. Knocking down SYNJ2 inhibited recycling of the EGF receptor to the cell surface and decreased the invasive behavior of cultured breast cancer cells. Expressing a phosphatase-deficient mutant of SYNJ2 in xenografted breast cancer cells suppressed tumor growth and lung metastasis in mice. A chemical screen identified SYNJ2 inhibitors that reduced cell invasion through a 3D matrix, suggesting that targeting SYNJ2 may prevent metastasis in breast cancer patients. Amplified HER2, which encodes a member of the epidermal growth factor receptor (EGFR) family, is a target of effective therapies against breast cancer. In search for similarly targetable genomic aberrations, we identified copy number gains in SYNJ2, which encodes the 5′-inositol lipid phosphatase synaptojanin 2, as well as overexpression in a small fraction of human breast tumors. Copy gain and overexpression correlated with shorter patient survival and a low abundance of the tumor suppressor microRNA miR-31. SYNJ2 promoted cell migration and invasion in culture and lung metastasis of breast tumor xenografts in mice. Knocking down SYNJ2 impaired the endocytic recycling of EGFR and the formation of cellular lamellipodia and invadopodia. Screening compound libraries identified SYNJ2-specific inhibitors that prevented cell migration but did not affect the related neural protein SYNJ1, suggesting that SYNJ2 is a potentially druggable target to block cancer cell migration.


Oncogene | 2012

A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis

Moshit Lindzen; Silvia Carvalho; Alex Starr; Nir Ben-Chetrit; Chaluvally-Raghavan Pradeep; Wolfgang J. Köstler; Aaron Rabinkov; Sara Lavi; Sarah S. Bacus; Yosef Yarden

Epidermal growth factor (EGF)-like growth factors control tumor progression as well as evasion from the toxic effects of chemotherapy. Accordingly, antibodies targeting the cognate receptors, such as EGFR/ErbB-1 and the co-receptor HER2/ErbB-2, are widely used to treat cancer patients, but agents that target the EGF-like growth factors are not available. To circumvent the existence of 11 distinct ErbB ligands, we constructed a soluble fusion protein (hereinafter: TRAP-Fc) comprising truncated extracellular domains of EGFR/ErbB-1 and ErbB-4. The recombinant TRAP-Fc retained high-affinity ligand binding to EGF-like growth factors and partially inhibited growth of a variety of cultured tumor cells. Consistently, TRAP-Fc displayed an inhibitory effect in xenograft models of human cancer, as well as synergy with chemotherapy. Additionally, TRAP-Fc inhibited invasive growth of mammary tumor cells and reduced their metastatic seeding in the lungs of animals. Taken together, the activities displayed by TRAP-Fc reinforce critical roles of EGF-like growth factors in tumor progression, and they warrant further tests of TRAP-Fc in preclinical models.

Collaboration


Dive into the Silvia Carvalho's collaboration.

Top Co-Authors

Avatar

Yosef Yarden

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moshit Lindzen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Nir Ben-Chetrit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sara Lavi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hadas Cohen-Dvashi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Wiemann

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Merav Kedmi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Maicol Mancini

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge