Silvia Del Guerra
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Del Guerra.
Journal of Clinical Investigation | 2007
Valeriya Lyssenko; R Lupi; Piero Marchetti; Silvia Del Guerra; Marju Orho-Melander; Peter Almgren; Marketa Sjögren; Charlotte Ling; Karl-Fredrik Eriksson; ÅsaLinda Lethagen; Rita Mancarella; Göran Berglund; Tiinamaija Tuomi; Peter Nilsson; Stefano Del Prato; Leif Groop
Genetic variants in the gene encoding for transcription factor-7-like 2 (TCF7L2) have been associated with type 2 diabetes (T2D) and impaired beta cell function, but the mechanisms have remained unknown. We therefore studied prospectively the ability of common variants in TCF7L2 to predict future T2D and explored the mechanisms by which they would do this. Scandinavian subjects followed for up to 22 years were genotyped for 3 SNPs (rs7903146, rs12255372, and rs10885406) in TCF7L2, and a subset of them underwent extensive metabolic studies. Expression of TCF7L2 was related to genotype and metabolic parameters in human islets. The CT/TT genotypes of SNP rs7903146 strongly predicted future T2D in 2 independent cohorts (Swedish and Finnish). The risk T allele was associated with impaired insulin secretion, incretin effects, and enhanced rate of hepatic glucose production. TCF7L2 expression in human islets was increased 5-fold in T2D, particularly in carriers of the TT genotype. Overexpression of TCF7L2 in human islets reduced glucose-stimulated insulin secretion. In conclusion, the increased risk of T2D conferred by variants in TCF7L2 involves the enteroinsular axis, enhanced expression of the gene in islets, and impaired insulin secretion.
The EMBO Journal | 2012
Michael Volkmar; Sarah Dedeurwaerder; Daniel Andrade Da Cunha; Matladi N. Ndlovu; Matthieu Defrance; Rachel Deplus; Emilie Calonne; Ute Volkmar; Mariana Igoillo-Esteve; Najib Naamane; Silvia Del Guerra; Matilde Masini; Marco Bugliani; Piero Marchetti; Miriam Cnop; Decio L. Eizirik; François Fuks
In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non‐diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non‐diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β‐cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.
The FASEB Journal | 2004
Cristina D'Alessandris; Francesco Andreozzi; Massimo Federici; Marina Cardellini; Antonio Brunetti; Marco Ranalli; Silvia Del Guerra; Davide Lauro; Stefano Del Prato; Piero Marchetti; Renato Lauro; Giorgio Sesti
Because adverse effects of glucose were attributed to its increased routing through the hexosamine pathway (HBP), we inquired whether HBP activation affects pancreatic β‐cell survival. Exposure of human islets to high glucose resulted in increased apoptosis of β‐cells upon serum deprivation that was reversed by azaserine. Also, glucosamine, a direct precursor of the downstream product of the HBP, increased human β‐cells apoptosis upon serum deprivation, which was reversed by benzyl‐2‐acetamido‐2‐deoxy‐α‐D‐galactopyranoside (BADGP), an inhibitor of protein O‐glycosylation. These results were reproduced in RIN rat β‐cells. Glucosamine treatment resulted in inhibition of tyrosine‐phosphorylation of the insulin receptor (IR), IRS‐1, and IRS‐2, which was associated with increased O‐glycosylation. These changes caused impaired activation of the PI 3‐kinase/Akt survival signaling that resulted in reduced GSK‐3 and FOXO1a inactivation. BADGP reversed the glucosamine‐induced reduction in insulin‐stimulated phosphorylation of IR, IRS‐1, IRS‐2, Akt, GSK‐3, and FOXO1a. Impaired FOXO1a inactivation sustained expression of the pro‐apoptotic protein Bim, without affecting Bad, Bcl‐XL, or Bcl‐2 expression. These results indicate that hyperglycemia may increase susceptibility to apoptosis of human and rat β‐cell through activation of the HBP. Increased routing of glucose through this metabolic pathway results in impaired activation of the IR/IRSs/PI3‐kinase/Akt survival pathway by induction of O‐glycosylation of signaling molecules.
Molecular Genetics and Metabolism | 2010
Stéphane Cauchi; Silvia Del Guerra; Hélène Choquet; V. D’Aleo; Christopher J. Groves; R Lupi; Mark McCarthy; Philippe Froguel; Piero Marchetti
BACKGROUND The C-allele of rs13266634 located in SLC30A8 (ZNT8) has been strongly associated with decreased insulin release and with type 2 diabetes (T2D) susceptibility in some but not all studies. To shed further light on this issue, we performed a meta-analysis of the association between rs13266634 and T2D in different ethnic groups and assessed the relationships between SLC30A8 genotypes and some properties of isolated human islets. METHODS From 32 original articles, a total of 77,234 control individuals and 44,945 subjects with T2D were studied in meta-analysis. To assess the relationships between SLC30A8 genotype and islet cell phenotype, insulin secretion in response to glucose, glucose plus arginine and glucose plus glibenclamide was determined in pancreatic islets isolated from 82 multiorgan donors genotyped for the rs13266634 polymorphism. Quantitative expression of SLC30A8, Insulin and Glucagon mRNA was also measured. RESULTS Overall, each SLC30A8 risk allele was associated with a 14% increased risk for T2D (P=2.78 x 10(-34)). The population risk of T2D attributable to this polymorphism was estimated at 9.5% in Europeans and 8.1% in East Asians. Basal and stimulated insulin secretion from human islets as well as islet expressions of SLC30A8, Insulin and Glucagon were not affected by the presence of the polymorphism. However, SLC30A8 expression was positively correlated with Insulin (r=0.75, P=6.43 x 10(-6)) and Glucagon (r: 0.70, P=4.89 x 10(-5)) levels. CONCLUSIONS The SLC30A8 rs13266634 polymorphism is among the most confirmed genetic markers of T2D in Europeans and East Asians. In isolated human islets, the risk C-allele does not affect ex-vivo insulin secretion and SLC30A8 expression, which is correlated with that of insulin and glucagon.
The Journal of Clinical Endocrinology and Metabolism | 2009
Sabrina Prudente; Daniela Scarpelli; Manisha Chandalia; Yuan Yuan Zhang; Eleonora Morini; Silvia Del Guerra; Francesco Perticone; Rong Li; Christine Powers; Francesco Andreozzi; Piero Marchetti; Bruno Dallapiccola; Nicola Abate; Alessandro Doria; Giorgio Sesti; Vincenzo Trischitta
CONTEXT The prevalence of type 2 diabetes (T2D), particularly among young adults, has been rising steadily during the past 2 decades. T2D, especially in its early-onset subtype, is under genetic control. TRIB3 inhibits insulin-stimulated Akt phosphorylation and subsequent insulin action. A TRIB3 gain-of-function polymorphism, Q84R (rs2295490), impairs insulin signaling. OBJECTIVE The objective of the study was to verify the association of TRIB3 Q84R with: 1) T2D, either subtyped or not according to age at diagnosis (early-onset, <45 yr, or >or= 45 yr); 2) insulin secretion and sensitivity in nondiabetic individuals; or 3) in vitro insulin secretion from isolated human islets. DESIGN Four different case-control samples comprising a total of 5,469 whites were examined. Insulinogenic and insulin sensitivity indexes and their interplay (disposition index) were assessed in 645 nondiabetic individuals at oral glucose tolerance test, glucose (16.7 mmol/liter)-induced in vitro insulin secretion was assessed in islets isolated from 54 nondiabetic donors. RESULTS In the whole sample, the R84 variant was nominally associated with T2D (odds ratio 1.17, 95% confidence interval 1.00-1.36, P = 0.04). When stratifying according to age of diabetes onset, R84 carriers had an increased risk of early-onset T2D (odds ratio 1.32, 95% confidence interval 1.10-1.58, P = 0.002). Among 645 nondiabetic subjects, R84 carriers had higher glucose levels (P = 0.005) and lower insulinogenic (P = 0.03) and disposition index (P = 0.02) during the oral glucose tolerance test. R84 islets were more likely to display relatively low glucose-stimulated insulin release (P = 0.04). CONCLUSIONS The TRIB3 R84 variant is associated with early-onset T2D in whites. Alteration in the insulin secretion/insulin sensitivity interplay appears to underlie this association.
European Journal of Pharmacology | 1999
R Lupi; Silvia Del Guerra; C. Tellini; R Giannarelli; A Coppelli; M Lorenzetti; M. Carmellini; Franco Mosca; R. Navalesi; Piero Marchetti
Pancreatic islet desensitization by high glucose concentrations is a temporary and reversible state of beta-cell refractoriness to glucose (and possibly other secretagogues), due to repeated or prolonged pre-exposure to increased glucose concentrations. We evaluated whether the oral antidiabetic agent metformin affects this phenomenon in isolated, human pancreatic islets, and whether the possible effects of the biguanide are influenced by the presence of a sulphonylurea, glyburide. Islets prepared from five human pancreases were incubated for 24 h in M199 culture medium containing either 5.5 or 22.2 mmol/l glucose, with or without a therapeutic concentration (2.4 microg/ml) of metformin. Then, the islets were challenged with either 3.3 mmol/l glucose, 16.7 mmol/l glucose, or 3.3 mmol/l glucose + 10 mmol/l arginine, and insulin release was measured. After incubation in the absence of metformin, the human islets exposed to 22.2 mmol/l glucose showed no significant increase in insulin release when challenged with 16.7 mmol/l glucose (confirming that hyperglycemia desensitizes pancreatic beta-cells). In the presence of metformin, the islets fully maintained the ability to significantly increase their insulin release in response to glucose, even when previously exposed to 22.2 mmol/l glucose. No major effect on arginine-induced insulin release was observed, whatever the culture conditions. The protective action of metformin was observed also when glyburide was present in the incubation medium, whereas the sulphonylurea alone did not affect insulin release from the islets previously exposed to high glucose concentrations. These in vitro results suggest that metformin can prevent the desensitization of human pancreatic islets induced by prolonged exposure to increased glucose concentrations.
Diabetes Care | 2009
Piero Marchetti; R Lupi; Silvia Del Guerra; Marco Bugliani; V. D'Aleo; Margherita Occhipinti; Ugo Boggi; Lorella Marselli; Matilde Masini
Type 2 diabetes is the most common form of diabetes in humans and results from a combination of genetic and acquired factors that impair β-cell function and tissue insulin sensitivity (1,2). However, there is growing evidence that β-cell dysfunction is crucial for the development and progression of this form of diabetes (3,4). Reduced β-cell functional mass in diabetes, and other categories of glucose intolerance, has been described by several authors, and decreased islet and/or β-cell volume in the pancreas of type 2 diabetic patients has been consistently reported. In addition, studies conducted in patients, and isolated islets, have shown both quantitative and qualitative defects of glucose-stimulated insulin secretion. Predictably, therefore, much interest is focused on the possibility of preserving the β-cell to prevent the onset of diabetes, or impede the progressive deterioration of glycemic control, observed after diagnosis and developing over the years. In this brief overview, several major features of β-cell dysfunction in different conditions (from normal glucose tolerance [NGT] to overt diabetes) will be described; thereafter, the possibility/feasibility of maintaining or restoring β-cell functional mass in type 2 diabetes, to prevent deterioration of glucose control, will be discussed. Several cross-sectional and prospective studies showed that β-cell dysfunction plays a major role in determining the onset and progression of type 2 diabetes. When insulin response to an oral glucose tolerance test and insulin sensitivity during euglycemic insulin clamp were measured in 388 individuals (138 with NGT; 49 with impaired glucose tolerance [IGT], and 201 with type 2 diabetes), a progressive decline of β-cell function (with insulin release corrected for glycemic stimulus and degree of insulin resistance) was observed; this decline commenced in normal glucose tolerant subjects (5). Furthermore, in 188 subjects, spanning the range from NGT to IGT or overt diabetes, it was found that …
Advances in Experimental Medicine and Biology | 2010
Piero Marchetti; R Lupi; Silvia Del Guerra; Marco Bugliani; Lorella Marselli; Ugo Boggi
beta-cell dysfunction is central to the onset and progression of type 2 diabetes. Reduced islet number and/or diminished beta-cell mass/volume in the pancreas of type 2 diabetic subjects have been reported by many authors, mainly due to increased apoptosis not compensated for by adequate regeneration. In addition, ultrastructural analysis has shown reduced insulin granules and morphological changes in several beta-cell organelles, including mitochondria and endoplasmic reticulum. Several quantitative and qualitative defects of beta-cell function have been described in human type 2 diabetes using isolated islets, including alterations in early phase, glucose-stimulated insulin release. These survival and functional changes are accompanied by modifications of islet gene and protein expression. The impact of genotype in affecting beta-cell function and survival has been addressed in a few studies, and a number of gene variants have been associated with beta-cell dysfunction. Among acquired factors, the role of glucotoxicity and lipotoxicity could be of particular importance, due to the potential deleterious impact of elevated levels of glucose and/or free fatty acids in the natural history of beta-cell damage. More recently, it has been proposed that inflammation might also play a role in the dysfunction of the beta-cell in type 2 diabetes. Encouraging, although preliminary, data show that some of these defects might be directly counteracted, at least in part, by appropriate in vitro pharmacological intervention.
PLOS ONE | 2011
Rosa Di Paola; Nunzia Caporarello; Antonella Marucci; Claudia Dimatteo; Claudia Iadicicco; Silvia Del Guerra; Sabrina Prudente; Dora Sudano; Claudia Miele; Cristina Parrino; Salvatore Piro; Francesco Beguinot; Piero Marchetti; Vincenzo Trischitta; Lucia Frittitta
The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance, defective insulin secretion and glucose metabolism abnormalities.
Molecular and Cellular Endocrinology | 2009
V. D'Aleo; Silvia Del Guerra; Manuela Martano; Barbara Bonamassa; Donatella Canistro; Antonio Soleti; Luca Valgimigli; Moreno Paolini; Franco Filipponi; Ugo Boggi; Stefano Del Prato; R Lupi
BACKGROUND Chronic exposure to high free fatty acids (FFA) can lead to irreversible damage of beta-cell accounting for impaired insulin secretion. Multiple mechanisms concur in generating the damage, but activation of oxidative stress may contribute to the final toxic effect. To better understand the phenomenon of lipotoxicity in human beta-cells, we evaluated the effects of 24-h pre-culture with 1.0 mmol/l FFA on the function, survival and mRNA expression of several enzymes involved in the generation and scavenging of reactive oxygen species (ROS). MATERIAL AND METHODS Human islets, prepared by collagenase digestion and density gradient purification from 9 pancreases of multiorgan donors, were incubated for 24-h in the presence 1.0 mmol/l long-chain mixture (oleate:palmitate, 2:1) FFA, with or without 100 micromol/l IAC, a non-peptidyl low molecular weight radical scavenger. At the end of incubation period, insulin secretion was measured by static incubation, and mRNA expression of insulin, Cu/Zn-SOD, Mn-SOD, Catalase, Glutathione peroxidase (GSH-px) and HO-1 by quantitative Real-Time RT-PCR. Nitrotyrosine levels were determined by an ELISA technique. RESULTS As compared to control incubation (Ctrl, no FFA), exposure to FFA was associated with impaired insulin release and reduced insulin mRNA expression. The presence of IAC in the incubation medium increased insulin release significantly and prevented changes in mRNA expression. Exposure to FFA was associated with oxidative stress as indicated by a significant accumulation of nitrotyrosine and IAC restrained such an increase. mRNA expression of Cu/Zn-SOD, Mn-SOD, Catalase, GSH-Px, and HO-1 were all modified after FFA exposure. These changes were partially prevented in the presence of IAC. CONCLUSIONS In human islets 24-h exposure to high FFA causes oxidative stress associated with changes of several enzymes involved in ROS scavenging. These effects were prevented by the use of an antioxidant molecule.