Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Maccari is active.

Publication


Featured researches published by Silvia Maccari.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus.

Fabio Bagnoli; Maria Rita Fontana; Elisabetta Soldaini; Ravi Mishra; Luigi Fiaschi; Elena Cartocci; Vincenzo Nardi-Dei; Paolo Ruggiero; Sarah Nosari; Maria Grazia De Falco; Giuseppe Lofano; Sara Marchi; Bruno Galletti; Paolo Mariotti; Antonina Torre; Silvia Maccari; Maria Scarselli; C. Daniela Rinaudo; Naoko Inoshima; Silvana Savino; Elena Mori; Silvia Rossi-Paccani; Barbara Baudner; Michele Pallaoro; Erwin Swennen; Roberto Petracca; Cecilia Brettoni; Sabrina Liberatori; Nathalie Norais; Elisabetta Monaci

Significance Staphylococcus aureus is a human pathogen causing life-threatening infections. The high incidence of methicillin-resistant S. aureus isolates resistant to all antibiotics makes the development of anti-S. aureus vaccines an urgent medical need. However, the unique ability of S. aureus to produce virulent factors, which counteract virtually all pathways of innate and adaptive immunity, has hampered all vaccine discovery efforts. Starting from the assumption that to be effective a vaccine should induce highly functional antibodies and potentiate the killing capacity of phagocytic cells, we selected a cocktail of five conserved antigens involved in different mechanisms of pathogenesis, and we formulated them with a potent adjuvant. This vaccine provides an unprecedented protective efficacy against S. aureus infection in animal models. Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7–10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17–secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.


The Journal of Infectious Diseases | 2012

Staphylococcus aureus FhuD2 Is Involved in the Early Phase of Staphylococcal Dissemination and Generates Protective Immunity in Mice

Ravi Mishra; Paolo Mariotti; Luigi Fiaschi; Sarah Nosari; Silvia Maccari; Sabrina Liberatori; Maria Rita Fontana; Alfredo Pezzicoli; Maria Grazia De Falco; Fabiana Falugi; Emrah Altindis; Davide Serruto; Guido Grandi; Fabio Bagnoli

Iron availability plays an essential role in staphylococcal pathogenesis. We selected FhuD2, a lipoprotein involved in iron-hydroxamate uptake, as a novel vaccine candidate against Staphylococcus aureus. Unprecedented for staphylococcal lipoproteins, the protein was demonstrated to have a discrete, punctate localization on the bacterial surface. FhuD2 vaccination generated protective immunity against diverse clinical S. aureus isolates in murine infection models. Protection appeared to be associated with functional antibodies that were shown to mediate opsonophagocytosis, to be effective in passive transfer experiments, and to potentially block FhuD2-mediated siderophore uptake. Furthermore, the protein was found to be up-regulated in infected tissues and was required for staphylococcal dissemination and abscess formation. Herein we show that the staphylococcal iron-hydroxamate uptake system is important in invasive infection and functions as an efficacious vaccine target.


Infection and Immunity | 2012

RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone RrgB, is protective in vivo and elicits opsonic antibodies.

Carole Harfouche; Sara Filippini; Claudia Gianfaldoni; Paolo Ruggiero; Monica Moschioni; Silvia Maccari; Laura Pancotto; Letizia Arcidiacono; Bruno Galletti; Stefano Censini; Elena Mori; Marzia Monica Giuliani; Claudia Facciotti; Elena Cartocci; Silvana Savino; Francesco Doro; Michele Pallaoro; Salvatore Nocadello; Giuseppe Mancuso; Mitch Haston; David Goldblatt; Michèle A. Barocchi; Mariagrazia Pizza; Rino Rappuoli; Vega Masignani

ABSTRACT Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae.


Infection and Immunity | 2010

The Two Variants of the Streptococcus pneumoniae Pilus 1 RrgA Adhesin Retain the Same Function and Elicit Cross-Protection In Vivo

Monica Moschioni; Carla Emolo; Massimiliano Biagini; Silvia Maccari; Werner Pansegrau; Claudio Donati; Markus Hilleringmann; Ilaria Ferlenghi; Paolo Ruggiero; Antonia Sinisi; Mariagrazia Pizza; Nathalie Norais; Michèle A. Barocchi; Vega Masignani

ABSTRACT Thirty percent of Streptococcus pneumoniae isolates contain pilus islet 1, coding for a pilus composed of the backbone subunit RrgB and two ancillary proteins, RrgA and RrgC. RrgA is the major determinant of in vitro adhesion associated with pilus 1, is protective in vivo in mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the “head” of the protein, which contains the putative binding domains, whereas the elongated “stalk” was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the “head” domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.


Infection and Immunity | 2009

Sortase A confers protection against Streptococcus pneumoniae in mice.

Claudia Gianfaldoni; Silvia Maccari; Laura Pancotto; Giacomo Rossi; Markus Hilleringmann; Werner Pansegrau; Antonia Sinisi; Monica Moschioni; Vega Masignani; Rino Rappuoli; Giuseppe Del Giudice; Paolo Ruggiero

ABSTRACT Streptococcus pneumoniae sortase A (SrtA) is a transpeptidase that is highly conserved among pneumococcal strains, whose involvement in adhesion/colonization has been reported. We found that intraperitoneal immunization with recombinant SrtA conferred to mice protection against S. pneumoniae intraperitoneal challenge and that the passive transfer of immune serum before intraperitoneal challenge was also protective. Moreover, by using the intranasal challenge model, we observed a significant reduction of bacteremia when mice were intraperitoneally immunized with SrtA, while a moderate decrease of lung infection was achieved by intranasal immunization, even though no influence on nasopharynx colonization was seen. Taken together, our results suggest that SrtA is a good candidate for inclusion in a multicomponent, protein-based, pneumococcal vaccine.


PLOS ONE | 2016

Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge.

Diletta Magini; Cinzia Giovani; Simona Mangiavacchi; Silvia Maccari; Raffaella Cecchi; Jeffrey B. Ulmer; Ennio De Gregorio; Andrew Geall; Michela Brazzoli; Sylvie Bertholet

Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines.


Scientific Reports | 2016

Staphylococcus aureus -dependent septic arthritis in murine knee joints: local immune response and beneficial effects of vaccination

Alessia Corrado; Paolo Donato; Silvia Maccari; Raffaella Cecchi; Tiziana Spadafina; Letizia Arcidiacono; Simona Tavarini; Chiara Sammicheli; Donatello Laera; Andrea G. O. Manetti; Paolo Ruggiero; Bruno Galletti; Sandra Nuti; Ennio De Gregorio; Sylvie Bertholet; Anja Seubert; Fabio Bagnoli; Giuliano Bensi; Emiliano Chiarot

Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.


PLOS ONE | 2016

3D Reconstruction of the Human Airway Mucosa In Vitro as an Experimental Model to Study NTHi Infections

Pasquale Marrazzo; Silvia Maccari; Annarita Taddei; Luke Bevan; John L. Telford; Marco Soriani; Alfredo Pezzicoli

We have established an in vitro 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular, we reported that the mature model, entirely constituted of primary cells of human origin, develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary, we propose our in vitro model as a reliable and potentially customizable system to study mid/long term host-pathogen processes.


The Journal of Infectious Diseases | 2016

Identification of a Monoclonal Antibody Against Pneumococcal Pilus 1 Ancillary Protein Impairing Bacterial Adhesion to Human Epithelial Cells

Fulvia Amerighi; Maria Valeri; Danilo Donnarumma; Silvia Maccari; Monica Moschioni; Annarita Taddei; Lucia Lapazio; Werner Pansegrau; Scilla Buccato; Gabriella De Angelis; Paolo Ruggiero; Vega Masignani; Marco Soriani; Alfredo Pezzicoli

The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.


Scientific Reports | 2016

Paediatric obstructive sleep apnoea syndrome (OSAS) is associated with tonsil colonisation by Streptococcus pyogenes.

Elisa Viciani; Francesca Montagnani; Simona Tavarini; Giacinta Tordini; Silvia Maccari; Matteo Morandi; Elisa Faenzi; Cesare Biagini; Antonio Romano; Lorenzo Salerni; Oretta Finco; Stefano Lazzi; Paolo Ruggiero; Andrea De Luca; Michèle A. Barocchi; Andrea G. O. Manetti

The involvement of pathogenic bacteria in obstructive sleep apnoea syndrome (OSAS) has yet to be elucidated. We investigated the possible role of group A streptococcus (GAS) in OSAS pathogenesis. In 40 tonsillectomized patients affected by OSAS and 80 healthy controls, significant (p < 0.0001) association of GAS with paediatric OSAS was found. Supernatant from streptolysin O (SLO)-producing GAS induced production of cysteinyl leukotrienes (CysLTs) in tonsil mononuclear cells (TMCs). CysLTs-treated TMCs showed significant (p < 0.05) proliferation of CD4+ T, CD19+ and CD19+CD27+CD38+ B lymphocytes. We discovered a SLO-dependent activation of CysLTs production through a pathway involving TOLL-like receptor 4 (TLR4), TIR-domain-containing adapter-inducing interferon-β (TRIF), Myeloid differentiation primary response gene 88 (MyD88), and p38 MAP Kinase. In conclusion, we hypothesise that GAS may contribute to paediatric tonsillar hyperplasia through CysLTs production induced by SLO, and this might explain its association with OSAS.

Collaboration


Dive into the Silvia Maccari's collaboration.

Researchain Logo
Decentralizing Knowledge