Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Medrano is active.

Publication


Featured researches published by Silvia Medrano.


Neurobiology of Aging | 2009

Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53.

Silvia Medrano; Melissa Burns-Cusato; Marybless B. Atienza; Donya Rahimi; Heidi Scrable

The question of whether or not stem cell loss drives aging in the brain has not been fully resolved. Here, we used mice over-expressing the short isoform of p53 (DeltaNp53 or p44) as a model of aging to gain insight into the cellular mechanisms underlying age-related functional deficits in the brain. By BrdU labeling, we observed an accelerated decline in the number of subventricular zone proliferating cells with age in p44Tg mice compared to mice with normal p53 expression. A 2-3-fold reduction in the number of slowly dividing stem cells was evident in the subventricular zone of 9-12-month-old p44Tg mice, but not in younger p44Tg mice or in normal mice. Consequently, the supply of new olfactory bulb neurons was also reduced. The number and size of neurospheres generated from subventricular zone cells from p44Tg mice was significantly reduced, and cells derived from these neurospheres had limited self-renewal and amplification capacities. At the cellular level, p44 lengthened the cell cycle and affected cell cycle reentry properties, evident by an increased proportion of cells in G0. At the functional level, p44 expression resulted in impaired olfactory discrimination in 15-16-month-old mice. This phenotype is driven by constitutive activation of p53 and constitutive expression of p21(Cip1/waf1) in neural stem cells. Our results demonstrate that p53 plays a crucial role in the maintenance of the regenerative capacity of the brain by regulating the proliferation of stem and progenitor cells.


American Journal of Physiology-renal Physiology | 2012

Two microRNAs, miR-330 and miR-125b-5p, mark the juxtaglomerular cell and balance its smooth muscle phenotype

Silvia Medrano; Maria C. Monteagudo; Maria Luisa S. Sequeira-Lopez; Ellen S. Pentz; R. Ariel Gomez

We have shown that microRNAs (miRNAs) are necessary for renin cell specification and kidney vascular development. Here, we used a screening strategy involving microarray and in silico analyses, along with in situ hybridization and in vitro functional assays to identify miRNAs important for renin cell identity. Microarray studies using vascular smooth muscle cells (SMCs) of the renin lineage and kidney cortex under normal conditions and after reacquisition of the renin phenotype revealed that of 599 miRNAs, 192 were expressed in SMCs and 234 in kidney cortex. In silico analysis showed that the highly conserved miR-330 and miR-125b-5p have potential binding sites in smoothelin (Smtn), calbindin 1, smooth muscle myosin heavy chain, α-smooth muscle actin, and renin genes important for the myoepithelioid phenotype of the renin cell. RT-PCR studies confirmed miR-330 and miR-125b-5p expression in kidney and SMCs. In situ hybridization revealed that under normal conditions, miR-125b-5p was expressed in arteriolar SMCs and in juxtaglomerular (JG) cells. Under conditions that induce reacquisition of the renin phenotype, miR-125b-5p was downregulated in arteriolar SMCs but remained expressed in JG cells. miR-330, normally absent, was expressed exclusively in JG cells of treated mice. In vitro functional studies showed that overexpression of miR-330 inhibited Smtn expression in SMCs. On the other hand, miR-125b-5p increased Smtn expression, whereas its inhibition reduced Smtn expression. Our results demonstrate that miR-330 and miR-125b-5p are markers of JG cells and have opposite effects on renin lineage cells: one inhibiting and the other favoring their smooth muscle phenotype.


Biology of Reproduction | 2003

Developmental Association of the Synaptic Activity-Regulated Protein Arc with the Mouse Acrosomal Organelle and the Sperm Tail

Bernhard Maier; Silvia Medrano; Susan B. Sleight; Pablo E. Visconti; Heidi Scrable

Abstract In neurons, arc (activity regulated, cytoskeleton associated) is an immediate early gene (IEG) that is rapidly and transiently induced by excitatory stimulation. It is believed to mediate rapid strengthening of signaling structures at activated synaptic sites. Unlike most IEGs, arc does not encode nuclear transcription factor, but an effector molecule that associates with the actin cytoskeleton. Cytoskeletal rearrangements of microtubule- and actin-based networks that occur at activated synapses also take place in similar fashion during the formation of the acrosome, the site of regulated exocytosis at fertilization. In this paper, arc is reported to be highly expressed both at the RNA and protein levels in postmeiotic germ cells in the testis of adult mice. Immunofluorescence studies reveal that arc is first present in the perinuclear region of round, elongating, and elongate spermatids, where it colocalizes with the developing acrosome. In isolated mature sperm, arc is present in the acrosomal region of the sperm head, the centriole region of the neck, and the principal piece of the tail. Arc is lost to varying degrees during sperm capacitation and in acrosome-reacted sperm. Phalloidin staining of mature sperm cells reveals an overlapping pattern of filamentous-actin and arc expression. These results support a role for arc and the actin cytoskeleton in the acrosome formation, the sperm acrosome reaction, and in sperm cell motility.


Pediatric Nephrology | 2014

Fate and plasticity of renin precursors in development and disease

R. Ariel Gomez; Brian C. Belyea; Silvia Medrano; Ellen S. Pentz; Maria Luisa S. Sequeira-Lopez

Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype—and ultimately the availability of renin—during basal conditions and in response to homeostatic threats. Notably, key transcriptional (Creb/CBP/p300, RBP-J) and posttranscriptional (miR-330, miR125b-5p) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.


The Journal of Comparative Neurology | 2001

Differential mRNA localization in astroglial cells in culture

Silvia Medrano; Oswald Steward

Messenger RNA (mRNA) targeting to specific subcellular domains has been studied extensively in many cell types, and there is increasing evidence suggesting that mRNA sorting also occurs in astrocytes. As a step toward developing strategies to evaluate the signals that govern mRNA sorting in astrocytes, the authors studied the subcellular distribution of several representative mRNAs, poly(A) RNA and ribosomal RNA, in process‐bearing (type‐2) astroglial cells in culture. Nonradioactive in situ hybridization analysis revealed a gradual increase in the expression of glial fibrillary acidic protein (GFAP) mRNA as type‐2 astrocytes differentiated in culture. In mature cells, labeling was present in both cell bodies and processes. GFAP mRNA labeling was granular in nature and was particularly concentrated at branch points and at the tips of the processes. Unlike GFAP mRNA, vimentin, β‐tubulin, and β‐ and γ‐actin mRNAs were mainly confined to the cell bodies, with only occasional labeling seen in the processes. Nonradioactive and radioactive in situ hybridization analysis of poly(A) and ribosomal RNA, respectively, revealed labeling in cell bodies and processes of immature and differentiated astrocytes. Treatment with nocodazole, a microtubule depolymerizing agent, resulted in a substantial reduction of GFAP mRNA labeling in the processes, whereas treatment with cytochalasin D, a microfilament‐disrupting agent, did not alter GFAP mRNA distribution. The results indicate that cultured type‐2 astrocytes have the capacity to sort mRNAs to different subcellular domains and that the localization of GFAP mRNA to astrocyte processes requires intact microtubules. J. Comp. Neurol. 430:56–71, 2001.


Journal of The American Society of Nephrology | 2015

Recombination Signal Binding Protein for Ig-κJ Region Regulates Juxtaglomerular Cell Phenotype by Activating the Myo-Endocrine Program and Suppressing Ectopic Gene Expression

Ruth M. Castellanos-Rivera; Ellen S. Pentz; Eugene Lin; Kenneth W. Gross; Silvia Medrano; Jing Yu; Maria Luisa S. Sequeira-Lopez; R. Ariel Gomez

Recombination signal binding protein for Ig-κJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7) and smooth muscle (Acta2, Myh11, Cnn1, and Smtn) genes and regulators of smooth muscle expression (miR-145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin-expressing cells in the juxtaglomerular apparatus. Microarray analysis of mutant arterioles revealed upregulation of genes usually expressed in hematopoietic cells. Thus, these results suggest that RBP-J maintains the identity of the renin cell by not only activating genes characteristic of the myo-endocrine phenotype but also, preventing ectopic gene expression and adoption of an aberrant phenotype, which could have severe consequences for the control of homeostasis.


Experimental Gerontology | 2009

Running on empty: how p53 controls INS/IGF signaling and affects life span.

Heidi Scrable; Silvia Medrano; Erica Ungewitter

In higher organisms dependent on the regenerative ability of tissue stem cells to maintain tissue integrity throughout adulthood, the failure of stem cells to replace worn out, dead, or damaged cells is seen as one mechanism that limits life span. In these organisms, tumor suppressors such as p53 are central participants in the control of longevity because they regulate stem cell proliferation. Several recent reports have identified p53 as a longevity gene in organisms such as Caenorhabditis elegans and Drosophila melanogaster, which lack proliferative stem cells in all but the germline and have relatively short life spans. This has forced us to reevaluate the role of p53 in the control of life span. We discuss how p53 might regulate longevity in both long- and short-lived species by controlling the activity of insulin-like molecules that operate in proliferating and non-proliferating compartments of adult somatic tissues. We also discuss the hierarchical structure of life span regulation where loss of p53 has life span extending effects. Finally, we suggest a molecular mechanism by which p53 might facilitate the response to severe nutrient deprivation that allows metabolically active cells to survive periods of starvation. Paradoxically, loss of p53 function in these cells would compromise life span.


Nature Communications | 2014

Identification of renin progenitors in the mouse bone marrow that give rise to B-cell leukaemia

Brian C. Belyea; Fang Xu; Ellen S. Pentz; Silvia Medrano; Minghong Li; Yan Hu; Stephen D. Turner; Robin Legallo; Craig A. Jones; Joseph D. Tario; Ping Liang; Kenneth W. Gross; Maria Luisa S. Sequeira-Lopez; R. Ariel Gomez

The cell of origin and triggering events for leukaemia are mostly unknown. Here we show that the bone marrow contains a progenitor that expresses renin throughout development and possesses a B-lymphocyte pedigree. This cell requires RBP-J to differentiate. Deletion of RBP-J in these renin-expressing progenitors enriches the precursor B-cell gene programme and constrains lymphocyte differentiation, facilitated by H3K4me3 activating marks in genes that control the pre-B stage. Mutant cells undergo neoplastic transformation, and mice develop a highly penetrant B-cell leukaemia with multi-organ infiltration and early death. These renin-expressing cells appear uniquely vulnerable as other conditional models of RBP-J deletion do not result in leukaemia. The discovery of these unique renin progenitors in the bone marrow and the model of leukaemia described herein may enhance our understanding of normal and neoplastic haematopoiesis.


American Journal of Pathology | 2014

Deletion of the miR-143/145 cluster leads to hydronephrosis in mice.

Silvia Medrano; Maria Luisa S. Sequeira-Lopez; R. Ariel Gomez

Obstructive nephropathy, the leading cause of kidney failure in children, can be anatomic or functional. The underlying causes of functional hydronephrosis are not well understood. miRNAs, which are small noncoding RNAs, regulate gene expression at the post-transcriptional level. We found that miR-145-5p, a member of the miR-143/145 cluster that is highly expressed in smooth muscle cells of the renal vasculature, was present in the pelvicalyceal system and the ureter. To evaluate whether the miR-143/145 cluster is involved in urinary tract function we performed morphologic, functional, and gene expression studies in mice carrying a whole-body deletion of miR-143/145. miR-143/145-deficient mice developed hydronephrosis, characterized by severe papillary atrophy and dilatation of the pelvicalyceal system without obvious physical obstruction. Moreover, mutant mice showed abnormal ureteral peristalsis. The number of ureter contractions was significantly higher in miR-143/145-deficient mice. Peristalsis was replaced by incomplete, short, and more frequent contractions that failed to completely propagate in a proximal-distal direction. Microarray analysis showed 108 differentially expressed genes in ureters of miR-143/145-deficient mice. Ninety genes were up-regulated and 18 genes were down-regulated, including genes with potential regulatory roles in smooth muscle contraction and extracellular matrix-receptor interaction. We show that miR-143/145 are important for the normal peristalsis of the ureter and report an association between the expression of these miRNAs and hydronephrosis.


Hypertension | 2017

Chronic Stimulation of Renin Cells Leads to Vascular PathologyNovelty and Significance

Silvia Medrano; Maria Luisa S. Sequeira-Lόpez; R. Ariel Gomez

Experimental or spontaneous genomic mutations of the renin–angiotensin system or its pharmacological inhibition in early life leads to renal abnormalities, including poorly developed renal medulla, papillary atrophy, hydronephrosis, inability to concentrate the urine, polyuria, polydipsia, renal failure, and anemia. At the core of such complex phenotype is the presence of unique vascular abnormalities: the renal arterioles do not branch or elongate properly and they have disorganized, concentric hypertrophy. This lesion has been puzzling because it is often found in hypertensive individuals whereas mutant or pharmacologically inhibited animals are hypotensive. Remarkably, when renin cells are ablated with diphtheria toxin, the vascular hypertrophy does not occur, suggesting that renin cells per se may contribute to the vascular disease. To test this hypothesis, on a Ren1c−/− background, we generated mutant mice with reporter expression (Ren1c−/−;Ren1c-Cre;R26R.mTmG and Ren1c−/−;Ren1c-Cre;R26R.LacZ) to trace the fate of reninnull cells. To assess whether reninnull cells maintain their renin promoter active, we used Ren1c−/−;Ren1c-YFP mice that transcribe YFP (yellow fluorescent protein) directed by the renin promoter. We also followed the expression of Akr1b7 and miR-330-5p, markers of cells programmed for the renin phenotype. Contrary to what we expected, reninnull cells did not die or disappear. Instead, they survived, increased in number along the renal arterial tree, and maintained an active molecular memory of the myoepitheliod renin phenotype. Furthermore, null cells of the renin lineage occupied the walls of the arteries and arterioles in a chaotic, directionless pattern directly contributing to the concentric arterial hypertrophy.

Collaboration


Dive into the Silvia Medrano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth W. Gross

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Yu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge