Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Proietti is active.

Publication


Featured researches published by Silvia Proietti.


Molecular Plant-microbe Interactions | 2010

Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid

Antonio Leon-Reyes; Yujuan Du; Annemart Koornneef; Silvia Proietti; Ana P. Körbes; Johan Memelink; Corné M. J. Pieterse; Tita Ritsema

Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.


FEBS Letters | 2009

Structural basis of the antifungal activity of wheat PR4 proteins

Laura Bertini; Carlo Caporale; Marco Testa; Silvia Proietti; Carla Caruso

PR4 proteins possess antifungal activity against several pathogenic fungi suggesting a pivotal role in defence reactions against plant pathogen attack. We already showed that wheatwin1, a wheat PR protein of class 4, is endowed with ribonuclease activity. In this study we produced three mutants altering the active site and performed comparative analysis with the native protein also in the presence of the ribonuclease inhibitor 5′‐ADP. We characterized the RNA binding site and its interaction with 5′‐ADP by 3D modelling and docking studies. Moreover, in vitro antifungal assays have been carried out in order to study the relationship between antifungal and ribonuclease activities. Finally, localization of wheatwin1 in Fusarium culmorum spores was evaluated using fluorescence light microscope.


Plant Journal | 2016

Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses

Silvia Coolen; Silvia Proietti; Richard Hickman; Nelson H. Davila Olivas; Pingping Huang; Marcel C. Van Verk; Johan A. Van Pelt; Alexander H.J. Wittenberg; Martin de Vos; Marcel Prins; Joop J. A. van Loon; Mark G. M. Aarts; Marcel Dicke; Corné M. J. Pieterse; Saskia C. M. Van Wees

In nature, plants have to cope with a wide range of stress conditions that often occur simultaneously or in sequence. To investigate how plants cope with multi-stress conditions, we analyzed the dynamics of whole-transcriptome profiles of Arabidopsis thaliana exposed to six sequential double stresses inflicted by combinations of: (i) infection by the necrotrophic fungus Botrytis cinerea, (ii) herbivory by chewing larvae of Pieris rapae, and (iii) drought stress. Each of these stresses induced specific expression profiles over time, in which one-third of all differentially expressed genes was shared by at least two single stresses. Of these, 394 genes were differentially expressed during all three stress conditions, albeit often in opposite directions. When two stresses were applied in sequence, plants displayed transcriptome profiles that were very similar to the second stress, irrespective of the nature of the first stress. Nevertheless, significant first-stress signatures could be identified in the sequential stress profiles. Bioinformatic analysis of the dynamics of co-expressed gene clusters highlighted specific clusters and biological processes of which the timing of activation or repression was altered by a prior stress. The first-stress signatures in second stress transcriptional profiles were remarkably often related to responses to phytohormones, strengthening the notion that hormones are global modulators of interactions between different types of stress. Because prior stresses can affect the level of tolerance against a subsequent stress (e.g. prior herbivory strongly affected resistance to B. cinerea), the first-stress signatures can provide important leads for the identification of molecular players that are decisive in the interactions between stress response pathways.


Journal of Experimental Botany | 2011

Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis

Silvia Proietti; L. Bertini; S. van der Ent; Antonio Leon-Reyes; Corné M. J. Pieterse; M G Tucci; C. Caporale; C C Caruso

WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and Arabidopsis, respectively, was investigated. In vitro analysis showed the ability of TaWRKY78 to bind a –17/+80 region of the wPR4e promoter, containing one cis-acting W-box. Moreover, transient expression analysis performed on both TaWRKY78 and AtWRKY20 showed their ability to recognize the cognate cis-acting elements present in the wPR4e and AtHEL promoters, respectively. Finally, this paper provides evidence that both transcription factors are able to cross-regulate the orthologous PR4 genes with an efficiency slightly lower than that exerted on the cognate promoters. The observation that orthologous genes are subjected to similar transcriptional control by orthologous transcription factors demonstrates that the terminal stages of signal transduction pathways leading to defence are conserved and suggests a fundamental role of PR4 genes in plant defence. Moreover, these results corroborate the hypothesis that gene orthology imply similar gene function and that diversification between monocot and dicot has most likely occurred after the specialization of WRKY function.


Biological Chemistry | 2012

Modular structure of HEL protein from Arabidopsis reveals new potential functions for PR-4 proteins.

Laura Bertini; Silvia Proietti; Maria Pia Aleandri; Francesca Mondello; Silvia Sandini; Carlo Caporale; Carla Caruso

Abstract Plants possess an innate immune system enabling them to defend themselves against pathogen attack. The accumulation of newly synthesized pathogenesis-related proteins (PRs) is one of the most studied inducible plant defence response. In this paper, we report on the characterization of a class I PR4 vacuolar protein from Arabidopsis, named AtHEL. The protein has a modular structure consisting of an N-terminal hevein-like domain (CB-HEL) and a C-terminal domain (CD-HEL) that are posttranslationally processed. Both domains show a strong antifungal activity, but they do not have chitinolitic properties. CD-HEL was found to be endowed with RNase, but not DNase activity. Molecular modeling carried out on both domains revealed that CB-HEL possesses a chitin binding site strictly conserved between hevein-type peptides and that the cavity involved in substrate interaction of CD-HEL do not show any residue substitution with respect to the orthologous wheatwin1 from wheat. Using a fishing for partners approach, CB-HEL was found to interact with a fungal fruiting body lectin. According to literature, we can hypothesize that CB-HEL could cross the pathogen hyphal membrane and that its interaction with a fungal lectin could knock out one of the weapons that the fungus uses.


Journal of Plant Physiology | 2016

Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1

Monica De Palma; Nunzio D’Agostino; Silvia Proietti; Laura Bertini; Matteo Lorito; Michelina Ruocco; Carla Caruso; Maria Luisa Chiusano; Marina Tucci

Trichoderma species include widespread rhizosphere-colonising fungi that may establish an opportunistic interaction with the plant, resulting in growth promotion and/or increased tolerance to biotic and abiotic stresses. For this reason, Trichoderma-based formulations are largely used in agriculture to improve yield while reducing the application of agro-chemicals. By using the Suppression Subtractive Hybridization method, we identified molecular mechanisms activated during the in vitro interaction between tomato (Solanum lycopersicum L.) and the selected strain MK1 of Trichoderma longibrachiatum, and which may participate in the stimulation of plant growth and systemic resistance. Screening and sequence analysis of the subtractive library resulted in forty unique transcripts. Their annotation in functional categories revealed enrichment in cell defence/stress and primary metabolism categories, while secondary metabolism and transport were less represented. Increased transcription of genes involved in defence, cell wall reinforcement and signalling of reactive oxygen species suggests that improved plant pathogen resistance induced by T. longibrachiatum MK1 in tomato may occur through stimulation of the above mechanisms. The array of activated defence-related genes indicates that different signalling pathways, beside the jasmonate/ethylene-dependent one, collaborate to fine-tune the plant response. Our results also suggest that the growth stimulation effect of MK1 on tomato may involve a set of genes controlling protein synthesis and turnover as well as energy metabolism and photosynthesis. Transcriptional profiling of several defence-related genes at different time points of the tomato-Trichoderma interaction, and after subsequent inoculation with the pathogen Botrytis cinerea, provided novel information on genes that may specifically modulate the tomato response to T. longibrachiatum, B. cinerea or both.


Plant Journal | 2018

Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists

Ioannis A. Stringlis; Silvia Proietti; Richard Hickman; Marcel C. Van Verk; Christos Zamioudis; Corné M. J. Pieterse

Summary Below ground, microbe‐associated molecular patterns (MAMPs) of root‐associated microbiota can trigger costly defenses at the expense of plant growth. However, beneficial rhizobacteria, such as Pseudomonas simiae WCS417, promote plant growth and induce systemic resistance without being warded off by local root immune responses. To investigate early root responses that facilitate WCS417 to exert its plant‐beneficial functions, we performed time series RNA‐Seq of Arabidopsis roots in response to live WCS417 and compared it with MAMPs flg22417 (from WCS417), flg22Pa (from pathogenic Pseudomonas aeruginosa) and fungal chitin. The MAMP transcriptional responses differed in timing, but displayed a large overlap in gene identity. MAMP‐upregulated genes are enriched for genes with functions in immunity, while downregulated genes are enriched for genes related to growth and development. Although 74% of the transcriptional changes inflicted by live WCS417 overlapped with the flg22417 profile, WCS417 actively suppressed more than half of the MAMP‐triggered transcriptional responses, possibly to allow the establishment of a mutually beneficial interaction with the host root. Interestingly, the sector of the flg22417‐repressed transcriptional network that is not affected by WCS417 has a strong auxin signature. Using auxin response mutant tir1afb2afb3, we demonstrate a dual role for auxin signaling in finely balancing growth‐promoting and defense‐eliciting activities of beneficial microbes in plant roots.


Plant and Cell Physiology | 2016

Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

Lotte Caarls; Dieuwertje Van der Does; Richard Hickman; Wouter T. M. Jansen; Marcel C. Van Verk; Silvia Proietti; Oscar Lorenzo; Roberto Solano; Corné M. J. Pieterse; Saskia C. M. Van Wees

Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription.


Protein Journal | 2009

Molecular Characterization of a Wheat Protein Induced by Vernalisation

Laura Bertini; Silvia Proietti; Carlo Caporale; Carla Caruso

Using a PCR strategy we isolated from winter wheat (Triticum aestivum L. cv. Bolero) the ver2 gene coding for a modular protein constituted by an N-terminal domain called “dirigent”, found in several defence-related genes, and a C-terminal domain related to jacalin-related lectin (JRL). ver2 transcript as well as native Ver2 levels increased during vernalisation and upon methyl jasmonate treatment of young seedlings. ver2 transcript levels were kept constant either in infected tissues or in wounded samples indicating that Ver2 is not directly involved in plant defence mechanisms. The Ver2 protein was expressed in bacteria as a recombinant GST-Ver2 fusion protein. The purified recombinant protein was further characterized using an affinity chromatography approach based on its interaction with mannose-agarose beads. GST-Ver2 tightly bound to the matrix. Molecular modelling of the jacalin domain and mannose docking confirmed that Ver2 possesses d-mannose binding capacity.


Molecular Ecology Resources | 2013

Genomic Resources Notes accepted 1 February 2015 - 31 March 2015.

Wolfgang Arthofer; Laura Bertini; Carla Caruso; Francesco Cicconardi; Lynda F. Delph; Peter D. Fields; Minoru Ikeda; Yuki Minegishi; Silvia Proietti; Heike Ritthammer; Birgit C. Schlick-Steiner; Florian M. Steiner; Gregor A. Wachter; Herbert C. Wagner; Laura A. Weingartner

This article documents the public availability of (i) raw transcriptome sequence data, assembled contigs and BLAST hits of the Antarctic plant Colobanthus quitensis grown in two different climatic conditions, (ii) the draft genome sequence data (raw reads, assembled contigs and unassembled reads) and RAD‐tag read data of the marbled flounder Pseudopleuronectes yokohamae, (iii) transcriptome resources from four white campion (Silene latifolia) individuals from two morphologically divergent populations and (iv) nuclear DNA markers from 454 sequencing of reduced representation libraries (RRL) based on amplified fragment length polymorphism (AFLP) PCR products of four species of ants in the genus Tetramorium.

Collaboration


Dive into the Silvia Proietti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Tucci

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge