Silvia Taramino
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Taramino.
Bioorganic & Medicinal Chemistry Letters | 2009
Gianni Balliano; Henrietta Dehmlow; Simonetta Oliaro-Bosso; Matilde Scaldaferri; Silvia Taramino; Franca Viola; Giulia Caron; Johannes Aebi; Jean Ackermann
A series of 25 compounds, some of which previously were described as inhibitors of human liver microsomal oxidosqualene cyclase (OSC), were tested as inhibitors of Saccharomyces cerevisiae, Trypanosoma cruzi, Pneumocystis carinii and Arabidopsis thaliana OSCs expressed in an OSC-defective strain of S. cerevisiae. The screening identified three derivatives particularly promising for the development of novel anti-Trypanosoma agents and eight derivatives for the development of novel anti-Pneumocystis agents.
ChemMedChem | 2007
Simonetta Oliaro-Bosso; Franca Viola; Silvia Taramino; Silvia Tagliapietra; Alessandro Barge; Giancarlo Cravotto; Gianni Balliano
Eighteen coumarin derivatives were tested as inhibitors of oxidosqualene cyclases (OSCs) from Saccharomyces cerevisiae, Trypanosoma cruzi, Pneumocystis carinii, Homo sapiens, and Arabidopsis thaliana, all expressed in an OSC‐defective strain of S. cerevisiae. 35 All the compounds have an aminoalkyl chain bound to an aromatic nucleus; unconventional synthetic procedures (microwave‐ and ultrasound‐promoted reactions) were successfully used to prepare some of them. The most interesting structure‐dependent difference in inhibitory activities was observed with an N‐oxide group replacement of the tertiary amino group at the end of the side chain. An interesting species specificity also emerged: T. cruzi OSC was the least sensitive enzyme; P. carinii and A. thaliana OSCs were the most sensitive. The remarkable activities of three compounds on the T. cruzi enzyme and of five of them on the P. carinii enzyme suggest the present series as a promising compound family for the development of novel antiparasitic agents.
Biochimica et Biophysica Acta | 2008
Brian Teske; Silvia Taramino; M.S.A. Bhuiyan; N.S. Kumaraswami; Stephen K. Randall; Robert J. Barbuch; James A. Eckstein; Gianni Balliano; Martin Bard
Protein-protein interaction studies in the Saccharomyces cerevisiae ergosterol biosynthetic pathway suggest that enzymes in this pathway may act as an integrated multienzyme complex. The yeast sterol 3-ketoreductase (Erg27p) required for C-4 demethylation of sterols has previously been shown to also be required for the function of the upstream oxidosqualene cyclase/lanosterol synthase (Erg7p); thus, erg27 mutants accumulate oxidosqualenes as precursors rather than 3-ketosterones. In the present study, we have created various mutations in the ERG27 gene. These mutations include 5 C-terminal truncations, 6 internal deletions, and 32 point mutants of which 14 were obtained by site-directed mutagenesis and 18 by random mutagenesis. We have characterized these ERG27 mutations by determining the following: Erg27 and Erg7 enzyme activities, presence of Erg27p as determined by western immunoblots, ability to grow on various sterol substrates and GC sterol profiles. Mutations of the predicted catalytic residues, Y202F and K206A, resulted in the endogenous accumulation of 3-ketosterones rather than oxidosqualenes suggesting retention of Erg7 enzyme activity. This novel phenotype demonstrated that the catalytic function of Erg27p can be separated from its Erg7p chaperone ability. Other erg27 mutations resulted in proteins that were present, as determined by western immunoblotting, but unable to interact with the Erg7 protein. We also classify Erg27p as belonging to the SDR (short-chain dehydrogenase/reductase) family of enzymes and demonstrate the possibility of homo- or heterodimerization of the protein. This study provides new insights into the role of Erg27p in sterol biosynthesis.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2009
Simonetta Oliaro-Bosso; Silvia Taramino; Franca Viola; Silvia Tagliapietra; Giuseppe Ermondi; Giancarlo Cravotto; Gianni Balliano
Human and murine lanosterol synthases (EC 5.4.99.7) were studied as targets of a series of umbelliferone aminoalkyl derivatives previously tested as inhibitors of oxidosqualene cyclases from other eukaryotes. Tests were carried out on cell cultures of human keratinocytes and mouse 3T3 fibroblasts incubated with radiolabeled acetate, and on homogenates prepared from yeast cells expressing human lanosterol synthase, incubated with radiolabeled oxidosqualene. In cell cultures of both human keratinocytes and mouse 3T3 fibroblasts, the observed inhibition of cholesterol biosynthesis was selective for oxidosqualene cyclase. The most active compounds bear an allylmethylamino chain in position-7 of the coumarin ring. The inhibition was critically dependent on the position and length of the inhibitor side chain, as well as on the type of aminoalkyl group inserted at the end of the same chain. Molecular docking analyses, carried out to clarify details of inhibitors/enzyme interactions, proved useful to explain the observed differences in inhibitory activities.
Biochimica et Biophysica Acta | 2010
Silvia Taramino; Brian Teske; Simonetta Oliaro-Bosso; Martin Bard; Gianni Balliano
In mammals and yeasts, oxidosqualene cyclase (OSC) catalyzes the formation of lanosterol, the first cyclic intermediate in sterol biosynthesis. We used a murine myeloma cell line (NS0), deficient in the 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), as a model to study the potential interaction of the HSD17B7 with the OSC in mammals. HSD17B7 is the orthologue of the yeast steroid-3-ketoreductase (ERG27), an enzyme of ergosterol biosynthesis that plays a protective role towards OSC. Tracer experiments with NS0 cells showed that OSC is fully active in these mammalian cells, suggesting that in mammals the ketosteroid reductase is not required for OSC activity. Mouse and human HSD17B7 were overexpressed in ERG27-deletant yeast cells, and recombinant strains were tested for (i) the ability to grow on different media, (ii) steroid-3-ketoreductase activity, and (iii) OSC activity. Recombinant strains grew more slowly than the control yeast ERG27-overexpressing strain on sterol-deficient media, whereas the growth rate was normal on media supplemented with a 3-ketoreductase substrate. The full enzymatic functionality of mammalian steroid-3-ketoreductase expressed in yeast along with the lack of (yeast) OSC activity point to an inability of the mammalian reductase to assist yeast OSC. Results demonstrate that in mammals, unlike in yeast, OSC and steroid-3-ketoreductase are non-interacting proteins.
Biochemical Society Transactions | 2005
Simonetta Oliaro-Bosso; Tanja Schulz-Gasch; Silvia Taramino; M. Scaldaferri; Franca Viola; Gianni Balliano
Substrate access to the active-site cavity of squalene-hopene cyclase from Alicyclobacillus acidocaldarious and lanosterol synthase [OSC (oxidosqualene cyclase)] from Saccharomyces cerevisiae was studied by an inhibition, mutagenesis and homology-modelling approach. Crystal structure and homology modelling indicate that both enzymes possess a narrow constriction that separates an entrance lipophilic channel from the active-site cavity. The role of the constriction as a mobile gate that permits substrate passage was investigated by experiments in which critically located Cys residues, either present in native protein or inserted by site-directed mutagenesis, were labelled with specifically designed thiol-reacting molecules. Some amino acid residues of the yeast enzyme, selected on the basis of sequence alignment and a homology model, were individually replaced by residues bearing side chains of different lengths, charges or hydrophobicities. In some of these mutants, substitution severely reduced enzymatic activity and thermal stability. Homology modelling revealed that in these mutants some critical stabilizing interactions could no longer occur. The possible critical role of entrance channel and constriction in specific substrate recognition by eukaryotic OSC is discussed.
Biochimica et Biophysica Acta | 2010
Silvia Taramino; Martin Valachovic; Simonetta Oliaro-Bosso; Franca Viola; Brian Teske; Martin Bard; Gianni Balliano
In Saccharomyces cerevisiae and Candida albicans, two enzymes of the ergosterol biosynthetic pathway, oxidosqualene cyclase (Erg7p) and 3-keto reductase (Erg27p) interact such that loss of the 3-keto reductase also results in a concomitant loss of activity of the upstream oxidosqualene cyclase. This interaction wherein Erg27p has a stabilizing effect on Erg7p was examined to determine whether Erg7p reciprocally has a protective effect on Erg27p. To this aim, three yeast strains each lacking the ERG7 gene were tested for 3-ketoreductase activity by incubating either cells or cell homogenates with unlabeled and radiolabeled 3-ketosteroids. In these experiments, the ketone substrates were effectively reduced to the corresponding alcohols, providing definitive evidence that oxidosqualene cyclase is not required for the 3-ketoreductase activity. This suggests that, in S. cerevisiae, the protective relationship between the 3-keto reductase (Erg27p) and oxidosqualene cyclase (Erg7p) is not reciprocal. However, the absence of the Erg7p, appears to affect other enzymes of sterol biosynthesis downstream of lanosterol formation. Following incubation with radiolabeled and non-radiolabeled 3-ketosteroids we detected differences in hydroxysteroid accumulation and ergosterol production between wild-type and ERG7 mutant strains. We suggest that oxidosqualene cyclase affects Erg25p (C-4 sterol oxidase) and/or Erg26p (C-3 sterol dehydrogenase/C-4 decarboxylase), two enzymes that, in conjunction with Erg27p, are involved in C-4 sterol demethylation.
PLOS ONE | 2011
Simonetta Oliaro-Bosso; Giulia Caron; Silvia Taramino; Giuseppe Ermondi; Franca Viola; Gianni Balliano
In oxidosqualene cyclases (OSCs), an enzyme which has been extensively studied as a target for hypocholesterolemic or antifungal drugs, a lipophilic channel connects the surface of the protein with the active site cavity. Active site and channel are separated by a narrow constriction operating as a mobile gate for the substrate passage. In Saccharomyces cerevisiae OSC, two aminoacidic residues of the channel/constriction apparatus, Ala525 and Glu526, were previously showed as critical for maintaining the enzyme functionality. In this work sixteen novel mutants, each bearing a substitution at or around the channel constrictions, were tested for their enzymatic activity. Modelling studies showed that the most functionality-lowering substitutions deeply alter the H-bond network involving the channel/constriction apparatus. A rotation of Tyr239 is proposed as part of the mechanism permitting the access of the substrate to the active site. The inhibition of OSC by squalene was used as a tool for understanding whether the residues under study are involved in a pre-catalytic selection and docking of the substrate oxidosqualene.
Biochimica et Biophysica Acta | 2013
Jacob V. Layer; Brett M. Barnes; Yuji Yamasaki; Robert Barbuch; Liangtao Li; Silvia Taramino; Gianni Balliano; Martin Bard
In yeast, deletion of ERG27, which encodes the sterol biosynthetic enzyme, 3-keto-reductase, results in a concomitant loss of the upstream enzyme, Erg7p, an oxidosqualene cyclase (OSC). However, this phenomenon occurs only in fungi, as mammalian Erg27p orthologues are unable to rescue yeast Erg7p activity. In this study, an erg27 mutant containing the mouse ERG27 orthologue was isolated that was capable of growing without sterol supplementation (FGerg27). GC/MS analysis of this strain showed an accumulation of squalene epoxides, 3-ketosterones, and ergosterol. This strain which was crossed to a wildtype and daughter segregants showed an accumulation of squalene epoxides as well as ergosterol indicating that the mutation entailed a leaky block at ERG7. Upon sequencing the yeast ERG7 gene an A598S alteration was found in a conserved alpha helical region. We theorize that this mutation stabilizes Erg7p in a conformation that mimics Erg27p binding. This mutation, while decreasing OSC activity still retains sufficient residual OSC activity such that the strain in the presence of the mammalian 3-keto reductase enzyme functions and no longer requires the yeast Erg27p. Because sterol biosynthesis occurs in the ER, a fusion protein was synthesized combining Erg7p and Erg28p, a resident ER protein and scaffold of the C-4 demethyation complex. Both FGerg27 and erg27 strains containing this fusion plasmid and the mouse ERG27 orthologue showed restoration of ergosterol biosynthesis with minimal accumulation of squalene epoxides. These results indicate retention of Erg7p in the ER increases its activity and suggest a novel method of regulation of ergosterol biosynthesis.
Lipids | 2016
Terenzio Ferrante; Alessandro Barge; Silvia Taramino; Simonetta Oliaro-Bosso; Gianni Balliano
Studies in the post-squalene section of sterol biosynthesis may be hampered by the poor availability of authentic standards. The present study used different yeast strains engineered in 3-ketosteroid reductase (Erg27p) to obtain radioactive and non-radioactive intermediates of sterol biosynthesis hardly or not available commercially. Non-radioactive 3-keto 4-monomethyl sterones were purified from non-saponifiable lipids extracted from cells bearing point-mutated 3-ketosteroid reductase. Two strategies were adopted to prepare the radioactive compounds: (1) incubation of cell homogenates of an ERG27-deletant strain with radioactive lanosterol, (2) incubation of growing cells of a strain expressing point-mutated 3-ketosteroid reductase with radioactive acetate. Chemical reduction of both radioactive and non-radioactive 3-keto sterones gave the physiological 3-β OH sterols, as well as the non-physiological 3-α OH isomers. This combined biological and chemical preparation procedure provided otherwise unavailable or hardly available 4-mono-methyl intermediates of sterol biosynthesis, paving the way for research into their roles in physiological and pathological conditions.