Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianni Balliano is active.

Publication


Featured researches published by Gianni Balliano.


Yeast | 1999

Systematic analysis of yeast strains with possible defects in lipid metabolism

Günther Daum; Gabriele Tuller; Tamara Nemec; Cladia Hrastnik; Gianni Balliano; Luigi Cattel; Paola Milla; Flavio Rocco; Aadreas Conzelmann; Christine Vionnet; Diane E. Kelly; Steven L. Kelly; Eckhard Schweizer; Hans-Joachim Schüller; Ursula Hojad; Eva Greiner; Kerin Finger

Lipids are essential components of all living cells because they are obligate components of biological membranes, and serve as energy reserves and second messengers. Many but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of the yeast Saccharomyces cerevisiae have been cloned and gene products have been functionally characterized. Less information is available about genes and gene products governing the transport of lipids between organelles and within membranes or the turnover and degradation of complex lipids. To obtain more insight into lipid metabolism, regulation of lipid biosynthesis and the role of lipids in organellar membranes, a group of five European laboratories established methods suitable to screen for novel genes of the yeast Saccharomyces cerevisiae involved in these processes. These investigations were performed within EUROFAN (European Function Analysis Network), a European initiative to identify the functions of unassigned open reading frames that had been detected during the Yeast Genome Sequencing Project. First, the methods required for the complete lipid analysis of yeast cells based on chromatographic techniques were established and standardized. The reliability of these methods was demonstrated using tester strains with established defects in lipid metabolism. During these investigations it was demonstrated that different wild‐type strains, among them FY1679, CEN.PK2‐1C and W303, exhibit marked differences in lipid content and lipid composition. Second, several candidate genes which were assumed to encode proteins involved in lipid metabolism were selected, based on their homology to genes of known function. Finally, lipid composition of mutant strains deleted of the respective open reading frames was determined. For some genes we found evidence suggesting a possible role in lipid metabolism. Copyright


Biochemical Pharmacology | 1985

In vitro inhibition of animal and higher plants 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3- dihydrosqualene and derivatives, and by other ammonium-containing molecules

Albert Duriatti; Pierrette Bouvier-Navé; Pierre Benveniste; Francis Schuber; Laura Delprino; Gianni Balliano; Luigi Cattel

2-Aza-2,3-dihydrosqualene and related molecules, a series of new compounds designed as analogues of the transient carbocationic high energy intermediate, occurring in the oxirane ring opening during the cyclization of 2,3-oxidosqualene, were tested in vitro as inhibitors of the microsomal 2,3-oxidosqualene cyclase of animals (rat liver) and of higher plants (maize, pea). These molecules proved to be good and specific inhibitors for the cyclases of both phyla. The inhibition is due to positively charged species and is sensitive to the steric hindrance around the nitrogen-atom. 4,4,10 beta-Trimethyl-trans-decal-3 beta-ol and 4,10 beta-dimethyl-trans-decal-3 beta-ol, which have previously been described (J.A. Nelson et al., J. Am. chem. Soc. 100, 4900 (1978] as inhibitors of the 2,3-oxidosqualene cyclase of chinese hamster ovary cells, were found to be non-competitive inhibitors of the rat liver microsomal enzyme and presented no activity towards the higher plants cyclases. Aza derivatives of these decalines (A. Rahier et al., Phytochemistry, in press), which were aimed to mimic the C-8 carbocationic intermediate occurring during later steps of the 2,3-oxidosqualene cyclization did not inhibit the cyclases. This result underlines the theoretical limitations of the high energy analogues concept in designing enzyme inhibitors. Amongst other molecules tested, 2,3-epiminosqualene was found to be a reversible, non-competitive inhibitor of the cyclases; similarly U18666A was a very potent inhibitor of the microsomal cyclases. In contrast AMO 1618, a known anticholesterolemic agent reported previously to act at the level of the 2,3-oxidosqualene cyclization step, was not found per se to act on the cyclases.


Lipids | 1986

The squalene-2,3-epoxide cyclase as a model for the development of new drugs

Luigi Cattel; Maurizio Ceruti; Franca Viola; Laura Delprino; Gianni Balliano; Albert Duriatti; Pierrette Bouvier-Navé

The 2,3-oxido squalene (SO) cyclases represent a group of enzymes which convert SO into polycyclic triterpenoids such as lanosterol, cycloartenol, cucurbitadienol and β-amyrin. Taking into account the postulated model of the enzymatic cyclization of SO, we have investigated the possibility of designing compounds that would be selective and potent inhibitors of SO cyclases. Due to the fundamental role of sterols in animal, higher plant and fungal tissues, these inhibitors might behave as very selective (ipocholesterolemic, antifungal or phytotoxic) drugs.Our first approach was the synthesis and biological evaluation of 2-aza-2,3-dihydrosqualene and its derivatives which, being protonated at physiological pH, would present some similarities to the C-2 carbon ion generated by the opening of the oxirane ring of SO. Microsomes from different sources (germinated pea cotyledons, maize seedlings, rat liver and yeasts) were utilized to determine the inhibition values (I50: concentration of inhibitor producing 50% inhibition at a given substrate concentration).From the results obtained so far we conclude that 2-aza-2-dihydrosqualene and its derivatives strongly inhibited the cyclases, the site of the enzyme responsible for binding to the inhibitor is quite sensitive to the steric hindrance, and the degree of the inhibitory activity is greater in higher plants than in rat liver or fungi.


European Journal of Medicinal Chemistry | 1987

Synthesis and biological activity of azasqualenes, bis-azasqualenes and derivatives

Maurizio Ceruti; Gianni Balliano; Franca Viola; Luigi Cattel; Nicolas Gerst; Francis Schuber

Azasqualenes, bis-azasqualenes and derivatives, designed as inhibitors of squalene 2,3-epoxide cyclase, a key enzyme in sterol biosynthesis, were synthesized and their in vitro activities against a variety of yeasts, fungi, gram-positive and gram-negative bacteria were determined. The synthesis involves a new method of squalene degradation, together with an unusual procedure for the aminative reduction of lipophilic aldehydes. A study of the structure—activity relationship was attempted for different biological parameters: anti-bacterial and anti-fungal activities (MIC), inhibition of mycelial growth (GTT), surfactant activity (CMC) and membrane perturbation activity (induction of leakage in liposomes).


Biochimica et Biophysica Acta | 2003

In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity

Caiqing Mo; Paola Milla; Karin Athenstaedt; R. Ott; Gianni Balliano; Guenther Daum; Martin Bard

In Saccharomyces cerevisiae, the 3-keto reductase (Erg27p) encoded by ERG27 gene is one of the key enzymes involved in the C-4 demethylation of the sterol intermediate, 4,4-dimethylzymosterol. The oxidosqualene cyclase (Erg7p) encoded by the ERG7 gene converts oxidosqualene to lanosterol, the first cyclic component of sterol biosynthesis. In a previous study, we found that erg27 strains grown on cholesterol- or ergosterol-supplemented media did not accumulate lanosterol or 3-ketosterols but rather squalene, oxidosqualene, and dioxidosqualene intermediates normally observed in ERG7 (oxidosqualene cyclase) mutants. These results suggested a possible interaction between these two enzymes. In this study, we present evidence that Erg27p interacts with Erg7p, facilitating the association of Erg7p with lipid particles (LPs) and preventing digestion of Erg7p both in the endoplasmic reticulum (ER) and LPs. We demonstrate that Erg27p is required for oxidosqualene cyclase (Erg7p) activity in LPs, and that Erg27p co-immunoprecipitates with Erg7p in LPs but not in microsomal fractions. While Erg27p is essentially a component of the ER, it can also be detected in LPs. In erg27 strains, a truncated Erg7p mislocalizes to microsomes. Restoration of Erg7p enzyme activity and LPs localization was achieved in an erg27 strain transformed with a plasmid containing a wild-type ERG27 allele. We suggest that the physical interaction of Erg27p with Erg7p is an essential regulatory tool in yeast sterol biosynthesis.


Lipids | 2001

Vinyl sulfide derivatives of truncated oxidosqualene as selective inhibitors of oxidosqualene and squalene-hopene cyclases

Maurizio Ceruti; Gianni Balliano; Flavio Rocco; Paola Milla; Silvia Arpicco; Luigi Cattel; Franca Viola

Various vinyl sulfide and ketene dithioacetal derivatives of truncated 2,3-oxidosqualene were developed. These compounds, having the reactive functions at positions C-2, C-15 and C-19 of the squalene skeleton, were studied as inhibitors of pig liver and Saccharomyces cerevisiae oxidosqualene cyclases (OSC) (EC 5.4.99.7) and of Alicyclobacillus acidocaldarius squalene hopene cyclase (SHC) (EC 5.4.99.-). They contain one or two sulfur atoms in α-skeletal position to carbons considered to be cationic during enzymatic cyclization of the substrate and should strongly interact with enzyme nucleophiles of the active site. Most of the new compounds are inhibitors of the OSC and of SHC, with various degrees of selectivity. The methylthiovinyl derivative, having the reactive group at position 19, was the most potent and selective inhibitor of the series toward S. cerevisiae OSC, with a concentration inhibiting 50% of the activity of 50 nM, while toward the animal enzyme it was 20 times less potent. These results could offer new insight for the design of antifungal drugs.


Biochimica et Biophysica Acta | 1988

Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives.

Gianni Balliano; Franca Viola; Maurizio Ceruti; Luigi Cattel

The ability of some azasqualene derivatives to inhibit yeast cell growth was compared with their inhibition activity on squalene-2,3-oxide cyclase (EC 5.4.99.7) both in living cells and in microsome preparations. Among the compounds tested, N,N-diethylazasqualene showed the best correlation between the activity on squalene-2,3-oxide cyclase and its inhibition of yeast growth. The N-oxide derivative, N,N-diethylazasqualene N-oxide, which was as active as the amine in microsomes, was much less active in living cells, probably because it could not easily penetrate the cell wall. Kinetic analysis of the inhibitory activity of compounds on squalene-2,3-oxide cyclase revealed a sharp difference between N,N-diethylazasqualene and its N-oxide; the former showed a non-competitive-type inhibition, whereas the latter behaved as a competitive inhibitor.


Lipids | 2002

Subcellular localization of oxidosqualene cyclases from Arabidopsis thaliana, Trypanosoma cruzi, and Pneumocystis carinii expressed in yeast

Paola Milla; Franca Viola; S. Oliaro Bosso; Flavio Rocco; L. Cattel; B. M. Joubert; R. J. LeClair; Seiichi P. T. Matsuda; Gianni Balliano

Cycloartenol synthase from Arabidopsis thaliana and lanosterol synthase from Trypanosoma cruzi and Pneumocystis carinii were expressed in yeast, and their subcellular distribution in the expressing cells was compared. Determination of enzymatic (oxidosqualene cyclase, OSC) activity and SDS-PAGE analysis of subcellular fractions proved that enzymes from T. cruzi and A. thaliana have high affinity for lipid particles, a subcellular compartment rich in triacylglycerols, and steryl esters, harboring several enzymes of lipid metabolism. In lipid particles of strains expressing the P. carinii enzyme, neither OSC activity nor the electrophoretic band at the appropriate M.W. were detected. Microsomes from the three expressing strains retained some OSC activity. Affinity of enzymes from A. thaliana and T. cruzi for lipid particles is similar to that of OSC of Saccharomyces cerevisiae, which is mainly located in this compartment. A different distribution of OSC in yeast cells suggests that they differ in some structural features critical for the interaction with the surface of lipid particles. Computer analysis supports the hypothesis of the structural difference since OSC from S. cerevisiae, A. thaliana, and T. cruzi lack or contain only one transmembrane spanning domain (a structural feature that makes a protein poorly inclined to associate with lipid particles), whereas OSC from P. carinii possesses six transmembrane domains. In the strain expressing cycloartenol synthase from A. thaliana, the accumulation of lipid particles largely exceeded that of the other strains.


Biophysical Chemistry | 1995

Inhibition of bovine β-trypsin, human α-thrombin and porcine pancreatic β-kallikrein-B by 4′,6-diamidino-2-phenylindole, 6-amidinoindole and benzamidine: a comparative thermodynamic and X-ray structural study

Elena Casale; Charles Collyer; Paolo Ascenzi; Gianni Balliano; Paola Milla; Franca Viola; Mauro Fasano; Enea Menegatti; Martino Bolognesi

Abstract The inhibitory effect of 4′,6-diamidino-2-phenylindole (DAPI) and 6-amidinoindole on the catalytic properties of bovine β-trypsin (trypsin), human α-thrombin (thrombin) and porcine pancreatic β-kallikrein-B (kallikrein) was investigated (between pH 3.0 and 7.0, I = 0.1 M; T = 30.0 ± 0.5°C), and analyzed in parallel with that of benzamidine, commonly taken as a molecular inhibitor model of serine proteinases. Next, the X-ray crystal structure of the trypsin: DAPI complex was solved at 1.9 A resolution ( R = 0.161). Over the whole pH range explored, values of the association inhibition constant ( K i ) for DAPI and 6-amidinoindole binding to trypsin, thrombin and kallikrein are higher than those found for benzamidine association, suggesting a binding mode of DAPI to the enzyme primary specificity pocket-based on the indole moiety of the inhibitor. On lowering the pH from 5.5 to 3.0, the decrease in affinity for DAPI, 6-amidinoindole and benzamidine binding to trypsin, thrombin and kallikrein reflects the acidic p K shift of the Asp189 invariant residue, present at the bottom of the primary specificity subsite of the serine proteinases considered, from 4.5, in the free enzyme, to 3.7, in the proteinase:inhibitor complexes. Inspection of the refined crystal structure of the trypsin: DAPI complex, however, does not allow a unique interpretation of the inhibitor binding mode. The present data were analysed in parallel with those reported for related serine (pro)enzyme/inhibitor systems.


Biochemical Pharmacology | 1995

Inhibition of 2,3-oxidosqualene cyclase and sterol biosynthesis by 10- and 19-azasqualene derivatives

Franca Viola; Paola Brusa; Gianni Balliano; Maurizio Ceruti; Olivier Boutaud; Francis Schuber; Luigi Cattel

The inhibition of 2,3-oxidosqualene-lanosterol cyclase (EC 5.4.99.7) (OSC) by new azasqualene derivatives, mimicking the proC-8 and proC-20 carbocationic high-energy intermediates of the cyclization of 2,3-oxidosqualene to lanosterol, was studied using pig liver microsomes, partially purified preparations of OSC, and yeast microsomes. The azasqualene derivatives tested were: 6E- and 6Z-10aza-10,11-dihydrosqualene-2,3-epoxide 17 and 18, 19-aza-18,19,22,23-tetrahydrosqualene-2,3-epoxide 19 and its corresponding N-oxide 20, and 19-aza-18,19,22,23-tetrahydrosqualene 21. The compounds 17 and 19 (i.e. the derivatives bearing the 2,3-epoxide ring and the same geometrical configuration as the OSC substrate) were effective inhibitors, as shown by the Ki obtained using partially purified OSC: 2.67 microM and 2.14 microM, respectively. Compound 18, having an incorrect configuration and the 19-aza derivative 21, lacking the 2,3-epoxide ring, were poor inhibitors, with IC50 of 44 microM and 70 microM, respectively. Compound 21 was a competitive inhibitor of OSC, whereas 17 and 19 were noncompetitive inhibitors, and showed a biphasic time-dependent inactivation of OSC, their apparent binding constants being 250 microM and 213 microM, respectively. The inhibition of sterol biosynthesis was studied using human hepatoma HepG2 cells. The incorporation of [14C] acetate in the C27 sterols was reduced by 50% by 0.55 microM 17, 0.22 microM 19, and 0.45 microM 21, whereas 2 microM 18 did not affect sterol biosynthesis. In the presence of 17, 19 and 21, only the intermediate metabolites 2,3-oxidosqualene and 2,3,22,23-dioxidosqualene accumulated, demonstrating a very specific inhibition of OSC.

Collaboration


Dive into the Gianni Balliano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Milla

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Milla

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge