Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvie Timmers is active.

Publication


Featured researches published by Silvie Timmers.


Physiology & Behavior | 2008

Muscular diacylglycerol metabolism and insulin resistance

Silvie Timmers; Patrick Schrauwen; Johan de Vogel

Failure of insulin to elicit an increase in glucose uptake and metabolism in target tissues such as skeletal muscle is a major characteristic of non-insulin dependent type 2 diabetes mellitus. A strong correlation between intramyocellular triacylglycerol concentrations and the severity of insulin resistance has been found and led to the assumption that lipid oversupply to skeletal muscle contributes to reduced insulin action. However, the molecular mechanism that links intramyocellular lipid content with the generation of muscle insulin resistance is still unclear. It appears unlikely that the neutral lipid metabolite triacylglycerol directly impairs insulin action. Hence it is believed that intermediates in fatty acid metabolism, such as fatty acyl-CoA, ceramides or diacylglycerol (DAG) link fat deposition in the muscle to compromised insulin signaling. DAG is identified as a potential mediator of lipid-induced insulin resistance, as increased DAG levels are associated with protein kinase C activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and PI3 kinase activity. As DAG is an intermediate in the synthesis of triacylglycerol from fatty acids and glycerol, its level can be lowered by either improving the oxidation of cellular fatty acids or by accelerating the incorporation of fatty acids into triacylglycerol. This review discusses the evidence that implicates DAG being central in the development of muscular insulin resistance. Furthermore, we will discuss if and how modulation of skeletal muscle DAG levels could function as a possible therapeutic target for the treatment of type 2 diabetes mellitus.


Cell Metabolism | 2014

Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

Eija Pirinen; Carles Cantó; Young Suk Jo; Laia Morató; Hongbo Zhang; Keir J. Menzies; Evan G. Williams; Laurent Mouchiroud; Norman Moullan; Carolina E. Hagberg; Wei Li; Silvie Timmers; Ralph Imhof; Jef Verbeek; Aurora Pujol; Barbara van Loon; Carlo Viscomi; Massimo Zeviani; Patrick Schrauwen; Anthony A. Sauve; Kristina Schoonjans; Johan Auwerx

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.


Diabetes | 2012

Perilipin 2 Improves Insulin Sensitivity in Skeletal Muscle Despite Elevated Intramuscular Lipid Levels

Madeleen Bosma; Matthijs K. C. Hesselink; Lauren M. Sparks; Silvie Timmers; Maria J. Ferraz; Frits Mattijssen; Denis van Beurden; Gert Schaart; Marc H. De Baets; Fons Verheyen; Sander Kersten; Patrick Schrauwen

Type 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid (IMCL) storage exceeds intracellular needs and induces lipotoxic events, ultimately contributing to the development of insulin resistance. Lipid droplet (LD)–coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/adipose differentiation–related protein [ADRP]) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol (TAG) storage, marginally increased fatty-acid (FA) oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet–induced increase in protein content of the subunits of the oxidative phosphorylation (OXPHOS) chain. Diacylglycerol levels were unchanged, whereas ceramide levels were increased. Despite the increased IMCL accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs toward TAG storage in LDs, thereby blunting lipotoxicity-associated insulin resistance.


Annals of the New York Academy of Sciences | 2013

Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits?

Silvie Timmers; Matthijs K. C. Hesselink; Patrick Schrauwen

The number of people suffering from metabolic disorders is dramatically increasing worldwide. The need for new therapeutic strategies to combat this growing epidemic of metabolic diseases is therefore also increasing. In 2003, resveratrol was discovered to be a small molecule activator of sirtuin 1 (SIRT1), an important molecular target regulating cellular energy metabolism and mitochondrial homeostasis. Rodent studies have clearly demonstrated the potential of resveratrol to improve various metabolic health parameters. To date, however, only limited clinical data are available that have systematically examined the health benefits of resveratrol in metabolically challenged humans. This short review will give an overview of the currently available clinical studies examining the effects of resveratrol on obesity and type 2 diabetes from a human perspective.


International Journal of Obesity | 2014

The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men

Ellen Konings; Silvie Timmers; Mark V. Boekschoten; Gijs H. Goossens; Johan W.E. Jocken; Lydia A. Afman; Michael Müller; Patrick Schrauwen; Edwin C. M. Mariman; Ellen E. Blaak

Polyphenolic compounds, such as resveratrol, have recently received widespread interest because of their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology and underlying processes. Eleven healthy obese men were supplemented with placebo and resveratrol for 30 days (150 mg per day), separated by a 4-week washout period in a double-blind randomized crossover design. A postprandial abdominal subcutaneous adipose tissue biopsy was collected to assess adipose tissue morphology and gene expression using microarray analysis. Resveratrol significantly decreased adipocyte size, with a shift toward a reduction in the proportion of large and very-large adipocytes and an increase in small adipocytes. Microarray analysis revealed downregulation of Wnt and Notch signaling pathways and upregulation of pathways involved in cell cycle regulation after resveratrol supplementation, suggesting enhanced adipogenesis. Furthermore, lysosomal/phagosomal pathway and transcription factor EB were upregulated reflecting an alternative pathway of lipid breakdown by autophagy. Further research is necessary to investigate whether resveratrol improves adipose tissue function.


Biochimica et Biophysica Acta | 2015

Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?

M. de Ligt; Silvie Timmers; Patrick Schrauwen

There is an increasing need for novel preventive and therapeutic strategies to combat obesity and related metabolic disorders. In this respect, the natural polyphenol resveratrol has attracted significant interest. Animal studies indicate that resveratrol mimics the effects of calorie restriction via activation of sirtuin 1 (SIRT1). SIRT1 is an important player in the regulation of cellular energy homeostasis and mitochondrial biogenesis. Rodent studies have shown beneficial effects of resveratrol supplementation on mitochondrial function, glucose metabolism, body composition and liver fat accumulation. However, confirmation of these beneficial effects in humans by placebo-controlled clinical trials remains relatively limited. This review will give an overview of pre-clinical and clinical studies examining the effects of resveratrol on obesity-induced negative health outcomes. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity

Silvie Timmers; Miranda Nabben; Madeleen Bosma; Bianca van Bree; Ellen Lenaers; Denis van Beurden; Gert Schaart; Margriet S. Westerterp-Plantenga; Wolfgang Langhans; Matthijs K. C. Hesselink; Vera B. Schrauwen-Hinderling; Patrick Schrauwen

A low fat oxidative capacity has been linked to muscle diacylglycerol (DAG) accumulation and insulin resistance. Alternatively, a low fat oxidation rate may stimulate glucose oxidation, thereby enhancing glucose disposal. Here, we investigated whether an ethyl-2-[6-(4-chlorophenoxy)hexyl]-oxirane-2-carboxylate (etomoxir)-induced inhibition of fat oxidation leads to muscle fat storage and insulin resistance. An intervention in healthy male subjects was combined with studies in human primary myotubes. Furthermore, muscle DAG and triacylglycerol (TAG), mitochondrial function, and insulin signaling were examined in etomoxir-treated C57bl6 mice. In humans, etomoxir administration increased glucose oxidation at the expense of fat oxidation. This effect was accompanied by an increased abundance of GLUT4 at the sarcolemma and a lowering of plasma glucose levels, indicative of improved glucose homeostasis. In mice, etomoxir injections resulted in accumulation of muscle TAG and DAG, yet improved insulin-stimulated GLUT4 translocation. Also in human myotubes, insulin signaling was improved by etomoxir, in the presence of increased intramyocellular lipid accumulation. These insulin-sensitizing effects in mice and human myotubes were accompanied by increased phosphorylation of AMP-activated protein kinase (AMPK). Our results show that a reduction in fat oxidation leading to accumulation of muscle DAG does not necessarily lead to insulin resistance, as the reduction in fat oxidation may activate AMPK.


PLOS ONE | 2011

Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle

Silvie Timmers; Johan de Vogel-van den Bosch; Matthijs K. C. Hesselink; Denis van Beurden; Gert Schaart; Maria J. Ferraz; Mario Losen; Pilar Martinez-Martinez; Marc H. De Baets; Johannes M. F. G. Aerts; Patrick Schrauwen

Background The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity. Methodology/Principal Findings The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle. Conclusions/Significance We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling.


Diabetic Medicine | 2013

Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects

Filip K. Knop; Ellen Konings; Silvie Timmers; Patrick Schrauwen; Jens J. Holst; Ellen E. Blaak

Resveratrol, a natural polyphenolic compound produced by various plants (e.g. red grapes) and found in red wine, has glucose‐lowering effects in humans and rodent models of obesity and/or diabetes. The mechanisms behind these effects have been suggested to include resveratrol‐induced secretion of the gut incretin hormone glucagon‐like peptide‐1. We investigated postprandial incretin hormone and glucagon responses in obese human subjects before and after 30 days of resveratrol supplementation.


Journal of Lipid Research | 2010

Prevention of high-fat diet-induced muscular lipid accumulation in rats by alpha lipoic acid is not mediated by AMPK activation

Silvie Timmers; Johan de Vogel-van den Bosch; Mhairi C. Towler; Gert Schaart; Esther Moonen-Kornips; Ronald P. Mensink; Matthijs K. C. Hesselink; D. Grahame Hardie; Patrick Schrauwen

Skeletal muscle triglyceride accumulation is associated with insulin resistance in obesity. Recently, it has been suggested that α lipoic acid (ALA) improves insulin sensitivity by lowering triglyceride accumulation in nonadipose tissues via activation of skeletal muscle AMP-activated protein kinase (AMPK). We examined whether chronic ALA supplementation prevents muscular lipid accumulation that is associated with high-fat diets via activation of AMPK. In addition, we tested if ALA supplementation was able to improve insulin sensitivity in rats fed low- and high-fat diets (LFD, HFD). Supplementing male Wistar rats with 0.5% ALA for 8 weeks significantly reduced body weight, both on LFD and HFD (−24% LFD+ALA vs. LFD, P < 0.01, and −29% HFD+ALA vs. HFD, P < 0.001). Oil red O lipid staining revealed a 3-fold higher lipid content in skeletal muscle after HFD compared with LFD and ALA-supplemented groups (P < 0.05). ALA improved whole body glucose tolerance (∼20% lower total area under the curve (AUC) in ALA supplemented groups vs. controls, P < 0.05). These effects were not mediated by increased muscular AMPK activation or ALA-induced improvement of muscular insulin sensitivity. To conclude, the prevention of HFD-induced muscular lipid accumulation and the improved whole body glucose tolerance are likely secondary effects due to the anorexic nature of ALA.

Collaboration


Dive into the Silvie Timmers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge