Simon A. Forbes
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon A. Forbes.
Nature | 2007
Christopher Greenman; Philip Stephens; Raffaella Smith; Gillian L. Dalgliesh; Chris Hunter; Graham R. Bignell; Helen Davies; Jon Teague; Adam Butler; Claire Stevens; Sarah Edkins; Sarah O’Meara; Imre Vastrik; Esther Schmidt; Tim Avis; Syd Barthorpe; Gurpreet Bhamra; Gemma Buck; Bhudipa Choudhury; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kris Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jon Hinton; Andy Jenkinson; David Jones
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be ‘passengers’ that do not contribute to oncogenesis. However, there was evidence for ‘driver’ mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
Nucleic Acids Research | 2011
Simon A. Forbes; Nidhi Bindal; Sally Bamford; Charlotte G. Cole; Chai Yin Kok; David Beare; Mingming Jia; Rebecca Shepherd; Kenric Leung; Andrew Menzies; Jon W. Teague; Peter J. Campbell; Michael R. Stratton; P. Andrew Futreal
COSMIC (http://www.sanger.ac.uk/cosmic) curates comprehensive information on somatic mutations in human cancer. Release v48 (July 2010) describes over 136 000 coding mutations in almost 542 000 tumour samples; of the 18 490 genes documented, 4803 (26%) have one or more mutations. Full scientific literature curations are available on 83 major cancer genes and 49 fusion gene pairs (19 new cancer genes and 30 new fusion pairs this year) and this number is continually increasing. Key amongst these is TP53, now available through a collaboration with the IARC p53 database. In addition to data from the Cancer Genome Project (CGP) at the Sanger Institute, UK, and The Cancer Genome Atlas project (TCGA), large systematic screens are also now curated. Major website upgrades now make these data much more mineable, with many new selection filters and graphics. A Biomart is now available allowing more automated data mining and integration with other biological databases. Annotation of genomic features has become a significant focus; COSMIC has begun curating full-genome resequencing experiments, developing new web pages, export formats and graphics styles. With all genomic information recently updated to GRCh37, COSMIC integrates many diverse types of mutation information and is making much closer links with Ensembl and other data resources.
Nucleic Acids Research | 2015
Simon A. Forbes; David Beare; Prasad Gunasekaran; Kenric Leung; Nidhi Bindal; Harry Boutselakis; Minjie Ding; Sally Bamford; Charlotte G. Cole; Sari Ward; Chai Yin Kok; Mingming Jia; Tisham De; Jon W. Teague; Michael R. Stratton; Ultan McDermott; Peter J. Campbell
COSMIC, the Catalogue Of Somatic Mutations In Cancer (http://cancer.sanger.ac.uk) is the worlds largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer. Our latest release (v70; Aug 2014) describes 2 002 811 coding point mutations in over one million tumor samples and across most human genes. To emphasize depth of knowledge on known cancer genes, mutation information is curated manually from the scientific literature, allowing very precise definitions of disease types and patient details. Combination of almost 20 000 published studies gives substantial resolution of how mutations and phenotypes relate in human cancer, providing insights into the stratification of mutations and biomarkers across cancer patient populations. Conversely, our curation of cancer genomes (over 12 000) emphasizes knowledge breadth, driving discovery of unrecognized cancer-driving hotspots and molecular targets. Our high-resolution curation approach is globally unique, giving substantial insight into molecular biomarkers in human oncology. In addition, COSMIC also details more than six million noncoding mutations, 10 534 gene fusions, 61 299 genome rearrangements, 695 504 abnormal copy number segments and 60 119 787 abnormal expression variants. All these types of somatic mutation are annotated to both the human genome and each affected coding gene, then correlated across disease and mutation types.
Nature | 2010
Gillian L. Dalgliesh; Kyle A. Furge; Christopher Greenman; Lina Chen; Graham R. Bignell; Adam Butler; Helen Davies; Sarah Edkins; Claire Hardy; Calli Latimer; Jon Teague; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Simon A. Forbes; Mingming Jia; David Jones; Henry Knott; Chai Yin Kok; King Wai Lau; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maguire; Kirsten McLay; Andrew Menzies; Tatiana Mironenko
Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification—SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase—as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.
British Journal of Cancer | 2004
Sally Bamford; Elisabeth Dawson; Simon A. Forbes; Jody Clements; R Pettett; A Dogan; Adrienne M. Flanagan; Jon W. Teague; P. A. Futreal; Michael R. Stratton; Richard Wooster
The discovery of mutations in cancer genes has advanced our understanding of cancer. These results are dispersed across the scientific literature and with the availability of the human genome sequence will continue to accrue. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website have been developed to store somatic mutation data in a single location and display the data and other information related to human cancer. To populate this resource, data has currently been extracted from reports in the scientific literature for somatic mutations in four genes, BRAF, HRAS, KRAS2 and NRAS. At present, the database holds information on 66 634 samples and reports a total of 10 647 mutations. Through the web pages, these data can be queried, displayed as figures or tables and exported in a number of formats. COSMIC is an ongoing project that will continue to curate somatic mutation data and release it through the website.
Current protocols in human genetics | 2008
Simon A. Forbes; G. Bhamra; Sally Bamford; E. Dawson; Chai Yin Kok; Jody Clements; Andrew Menzies; Jon W. Teague; P. A. Futreal; Michael R. Stratton
COSMIC is currently the most comprehensive global resource for information on somatic mutations in human cancer, combining curation of the scientific literature with tumor resequencing data from the Cancer Genome Project at the Sanger Institute, U.K. Almost 4800 genes and 250000 tumors have been examined, resulting in over 50000 mutations available for investigation. This information can be accessed in a number of ways, the most convenient being the Web‐based system which allows detailed data mining, presenting the results in easily interpretable formats. This unit describes the graphical system in detail, elaborating an example walkthrough and the many ways that the resulting information can be thoroughly investigated by combining data, respecializing the query, or viewing the results in different ways. Alternate protocols overview the available precompiled data files available for download. Curr. Protoc. Hum. Genet. 57:10.11.1‐10.11.26.
Nature Genetics | 2009
Gijs van Haaften; Gillian L. Dalgliesh; Helen Davies; Lina Chen; Graham R. Bignell; Christopher Greenman; Sarah Edkins; Claire Hardy; Sarah O'Meara; Jon Teague; Adam Butler; Jonathan Hinton; Calli Latimer; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Jennifer Cole; Simon A. Forbes; Mingming Jia; David Jones; Chai Yin Kok; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maquire; Kirsten McLay; Andrew Menzies
Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.
Nucleic Acids Research | 2010
Simon A. Forbes; Gurpreet Tang; Nidhi Bindal; Sally Bamford; Elisabeth Dawson; Charlotte G. Cole; Chai Yin Kok; Mingming Jia; Rebecca Ewing; Andrew Menzies; Jon W. Teague; Michael R. Stratton; P. Andrew Futreal
The catalogue of Somatic Mutations in Cancer (COSMIC) (http://www.sanger.ac.uk/cosmic/) is the largest public resource for information on somatically acquired mutations in human cancer and is available freely without restrictions. Currently (v43, August 2009), COSMIC contains details of 1.5-million experiments performed through 13 423 genes in almost 370 000 tumours, describing over 90 000 individual mutations. Data are gathered from two sources, publications in the scientific literature, (v43 contains 7797 curated articles) and the full output of the genome-wide screens from the Cancer Genome Project (CGP) at the Sanger Institute, UK. Most of the world’s literature on point mutations in human cancer has now been curated into COSMIC and while this is continually updated, a greater emphasis on curating fusion gene mutations is driving the expansion of this information; over 2700 fusion gene mutations are now described. Whole-genome sequencing screens are now identifying large numbers of genomic rearrangements in cancer and COSMIC is now displaying details of these analyses also. Examination of COSMIC’s data is primarily web-driven, focused on providing mutation range and frequency statistics based upon a choice of gene and/or cancer phenotype. Graphical views provide easily interpretable summaries of large quantities of data, and export functions can provide precise details of user-selected data.
Nucleic Acids Research | 2017
Simon A. Forbes; David Beare; Harry Boutselakis; Sally Bamford; Nidhi Bindal; John G. Tate; Charlotte G. Cole; Sari Ward; Elisabeth Dawson; Laura Ponting; Raymund Stefancsik; Bhavana Harsha; Chai Yin Kok; Mingming Jia; Harry C. Jubb; Zbyslaw Sondka; Sam Thompson; Tisham De; Peter J. Campbell
COSMIC, the Catalogue of Somatic Mutations in Cancer (http://cancer.sanger.ac.uk) is a high-resolution resource for exploring targets and trends in the genetics of human cancer. Currently the broadest database of mutations in cancer, the information in COSMIC is curated by expert scientists, primarily by scrutinizing large numbers of scientific publications. Over 4 million coding mutations are described in v78 (September 2016), combining genome-wide sequencing results from 28 366 tumours with complete manual curation of 23 489 individual publications focused on 186 key genes and 286 key fusion pairs across all cancers. Molecular profiling of large tumour numbers has also allowed the annotation of more than 13 million non-coding mutations, 18 029 gene fusions, 187 429 genome rearrangements, 1 271 436 abnormal copy number segments, 9 175 462 abnormal expression variants and 7 879 142 differentially methylated CpG dinucleotides. COSMIC now details the genetics of drug resistance, novel somatic gene mutations which allow a tumour to evade therapeutic cancer drugs. Focusing initially on highly characterized drugs and genes, COSMIC v78 contains wide resistance mutation profiles across 20 drugs, detailing the recurrence of 301 unique resistance alleles across 1934 drug-resistant tumours. All information from the COSMIC database is available freely on the COSMIC website.
Molecular Cancer Therapeutics | 2006
Ogechi N. Ikediobi; Helen Davies; Graham R. Bignell; Sarah Edkins; Claire Stevens; Sarah O'Meara; Thomas Santarius; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathan Hinton; Chris Hunter; Andy Jenkinson; David Jones; Vivienne Kosmidou; Richard Lugg; Andrew Menzies; Tatiana Mironenko; Adrian Parker; Janet Perry
The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens. [Mol Cancer Ther 2006;5(11):2606–12]