Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Bressendorff is active.

Publication


Featured researches published by Simon Bressendorff.


Plant Physiology | 2013

Transcriptome Responses to Combinations of Stresses in Arabidopsis

Simon Rasmussen; Pankaj Barah; Maria Cristina Suarez-Rodriguez; Simon Bressendorff; Pia Friis; Paolo Costantino; Atle M. Bones; Henrik Bjørn Nielsen; John Mundy

In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure them. Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus, delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to double stresses were not predic from the responses to single stress treatments. It also showed that plants prioritized between potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and combined stresses.


Cell Death & Differentiation | 2011

Role of autophagy in disease resistance and hypersensitive response-associated cell death

Daniel Hofius; David Munch; Simon Bressendorff; John Mundy; Morten Petersen

Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum stress. At the same time, autophagy can contribute to cellular suicide. The concurrent engagement of autophagy in these processes during infection may sometimes mask its contribution to differing pro-survival and pro-death decisions. The importance of autophagy in innate immunity in mammals is well documented, but how autophagy contributes to plant innate immunity and cell death is not that clear. A few research reports have appeared recently to shed light on the roles of autophagy in plant–pathogen interactions and in disease-associated host cell death. We present a first attempt to reconcile the results of this research.


The Plant Cell | 2013

Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis

Thomas Hackenberg; Trine Juul; Aija Auzina; Sonia Gwizdz; Anna Małolepszy; Katrien Van Der Kelen; Svend Secher Dam; Simon Bressendorff; Andrea Lorentzen; Peter Roepstorff; Kåre Lehmann Nielsen; Jan-Elo Jørgensen; Daniel Hofius; Frank Van Breusegem; Morten Petersen; Stig U. Andersen

Catalase directly interacts with and detoxifies reactive oxygen species. This work identifies catalase-deficient mutants in a screen for suppression of cell death and finds that promotion of cell death associated with the plant hypersensitive response requires catalase, suggesting that catalase could act as a direct molecular link between reactive oxygen species and cell death signaling. Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation-induced autophagy appeared normal in the nca1 and cat2 mutants. By contrast, autophagic degradation induced by avrRpm1 challenge was compromised, indicating that catalase acted upstream of immunity-triggered autophagy. The direct interaction of catalase with reactive oxygen species could allow catalase to act as a molecular link between reactive oxygen species and the promotion of autophagy-dependent cell death.


BMC Gastroenterology | 2009

Mapping of HNF4α target genes in intestinal epithelial cells

Mette Boyd; Simon Bressendorff; Jette Møller; Jørgen Olsen; Jesper T. Troelsen

BackgroundThe role of HNF4α has been extensively studied in hepatocytes and pancreatic β-cells, and HNF4α is also regarded as a key regulator of intestinal epithelial cell differentiation. The aim of the present work is to identify novel HNF4α target genes in the human intestinal epithelial cells in order to elucidate the role of HNF4α in the intestinal differentiation progress.MethodsWe have performed a ChIP-chip analysis of the human intestinal cell line Caco-2 in order to make a genome-wide identification of HNF4α binding to promoter regions. The HNF4α ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4α binding to actively transcribed genes with an open chromatin structure.Results1,541 genes were identified as potential HNF4α targets, many of which have not previously been described as being regulated by HNF4α. The 1,541 genes contributed significantly to gene ontology (GO) pathways categorized by lipid and amino acid transport and metabolism. An analysis of the homeodomain transcription factor Cdx-2 (CDX2), the disaccharidase trehalase (TREH), and the tight junction protein cingulin (CGN) promoters verified that these genes are bound by HNF4α in Caco2 cells. For the Cdx-2 and trehalase promoters the HNF4α binding was verified in mouse small intestine epithelium.ConclusionThe HNF4α regulation of the Cdx-2 promoter unravels a transcription factor network also including HNF1α, all of which are transcription factors involved in intestinal development and gene expression.


Autophagy | 2014

Autophagy deficiency leads to accumulation of ubiquitinated proteins, ER stress, and cell death in Arabidopsis

David Munch; Eleazar Rodriguez; Simon Bressendorff; Ohkmae K. Park; Daniel Hofius; Morten Petersen

Autophagy is a homeostatic degradation and recycling process that is also involved in defense against microbial pathogens and in certain forms of cellular suicide. Autophagy has been proposed to negatively regulate plant immunity-associated cell death related to the hypersensitive response (HR), as older autophagy-deficient mutants are unable to contain this type of cell death 5 to 10 d after infection. Such spreading cell death was found to require NPR1 (nonexpressor of PR genes 1), but surprisingly did not occur in younger atg mutants. In contrast, we find that npr1 mutants are not impaired in rapid programmed cell death activation upon pathogen recognition. Furthermore, our molecular evidence suggests that the NPR1-dependent spreading cell death in older atg mutants may originate from an inability to cope with excessive accumulation of ubiquitinated proteins and ER stress which derive from salicylic acid (SA)-dependent signaling (e.g., systemic acquired resistance). We also demonstrate that both senescence and immunity-related cell death seen in older atg mutants can be recapitulated in younger atg mutants primed with ER stress. We therefore propose that the reduction in SA signaling caused by npr1 loss-of-function is sufficient to alleviate the stress levels accumulated during aging in autophagy deficient cells which would otherwise become insurmountable and lead to uncontrolled cell death.


The Plant Cell | 2016

An Innate Immunity Pathway in the Moss Physcomitrella patens.

Simon Bressendorff; Raquel Azevedo; Chandra S. Kenchappa; Inés Ponce de León; Jakob Vesterlund Olsen; Magnus Wohlfahrt Rasmussen; Gitte Erbs; Mari-Anne Newman; Morten Petersen; John Mundy

A P. patens signaling pathway required for immunity triggered by PAMPs induces growth inhibition, a novel fluorescence burst, cell wall depositions, and accumulation of defense-related transcripts. MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens. Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMPs). This pathway induces rapid growth inhibition, a novel fluorescence burst, cell wall depositions, and accumulation of defense-related transcripts. Two P. patens MPKs (MPK4a and MPK4b) are phosphorylated and activated in response to PAMPs. This activation in response to the fungal PAMP chitin requires a chitin receptor and one or more MAP kinase kinase kinases and MAP kinase kinases. Knockout lines of MPK4a appear wild type but have increased susceptibility to the pathogenic fungi Botrytis cinerea and Alternaria brassisicola. Both PAMPs and osmotic stress activate some of the same MPKs in Arabidopsis. In contrast, abscisic acid treatment or osmotic stress of P. patens does not activate MPK4a or any other MPK, but activates at least one SnRK2 kinase. Signaling via MPK4a may therefore be specific to immunity, and the moss relies on other pathways to respond to osmotic stress.


The Plant Cell | 2018

An m6A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis

Laura Arribas-Hernández; Simon Bressendorff; Mathias Henning Hansen; Christian Poulsen; Susanne Erdmann; Peter Brodersen

The N6-methyladenosine RNA binding proteins ECT2, ECT3, and ECT4 are required for the correct timing of leaf formation and correct leaf and trichome morphogenesis. Methylation of N6-adenosine (m6A) in mRNA is an important posttranscriptional gene regulatory mechanism in eukaryotes. m6A provides a binding site for effector proteins (“readers”) that influence pre-mRNA splicing, mRNA degradation, or translational efficiency. YT521-B homology (YTH) domain proteins are important m6A readers with established functions in animals. Plants contain more YTH domain proteins than other eukaryotes, but their biological importance remains unknown. Here, we show that the cytoplasmic Arabidopsis thaliana YTH domain proteins EVOLUTIONARILY CONSERVED C-TERMINAL REGION2/3 (ECT2/3) are required for the correct timing of leaf formation and for normal leaf morphology. These functions depend fully on intact m6A binding sites of ECT2 and ECT3, indicating that they function as m6A readers. Mutation of the close ECT2 homolog, ECT4, enhances the delayed leaf emergence and leaf morphology defects of ect2/ect3 mutants, and all three ECT proteins are expressed at leaf formation sites in the shoot apex of young seedlings and in the division zone of developing leaves. ECT2 and ECT3 are also highly expressed at early stages of trichome development and are required for trichome morphology, as previously reported for m6A itself. Overall, our study establishes the relevance of a cytoplasmic m6A-YTH regulatory module in the timing and execution of plant organogenesis.


PLOS ONE | 2015

Transcriptome and genome size analysis of the Venus flytrap.

Michael Krogh Jensen; Josef Korbinian Vogt; Simon Bressendorff; Andaine Seguin-Orlando; Morten Petersen; Thomas Sicheritz-Pontén; John Mundy

The insectivorous Venus flytrap (Dionaea muscipula) is renowned from Darwin’s studies of plant carnivory and the origins of species. To provide tools to analyze the evolution and functional genomics of D. muscipula, we sequenced a normalized cDNA library synthesized from mRNA isolated from D. muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified into functional categories. A total of 15,547 full-length cDNA sequences were identified, from which open reading frames were detected in 10,941. Comparative GO analyses revealed that D. muscipula is highly represented in molecular functions related to catalytic, antioxidant, and electron carrier activities. Also, using a single copy sequence PCR-based method, we estimated that the genome size of D. muscipula is approx. 3 Gb. Our genome size estimate and transcriptome analyses will contribute to future research on this fascinating, monotypic species and its heterotrophic adaptations.


Autophagy | 2017

Autophagy is required for gamete differentiation in the moss Physcomitrella patens

Victoria Sanchez-Vera; Chandra Shekar Kenchappa; Katarina Landberg; Simon Bressendorff; Stefan Schwarzbach; Tom Martin; John Mundy; Morten Petersen; Mattias Thelander; Eva Sundberg

ABSTRACT Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.


Archive | 2017

Chitin-Induced Responses in the Moss Physcomitrella patens

Simon Bressendorff; Magnus Wohlfahrt Rasmussen; Morten Petersen; John Mundy

A MAP kinase pathway below a chitin receptor in the moss Physcomitrella patens induces immune responses including rapid growth inhibition, a novel fluorescence burst, and cell wall depositions. The molecular mechanisms producing these three responses are currently unknown but warrant further investigation in this simple model system. Here we describe qualitative, time-lapse, and quantitative assays to monitor and measure these responses.

Collaboration


Dive into the Simon Bressendorff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Mundy

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Daniel Hofius

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Munch

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jørgen Olsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge