Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon C. Johnson is active.

Publication


Featured researches published by Simon C. Johnson.


Circulation Research | 2011

Mitochondrial Oxidative Stress Mediates Angiotensin II–Induced Cardiac Hypertrophy and Gαq Overexpression–Induced Heart Failure

Dao Fu Dai; Simon C. Johnson; Jason J. Villarin; Michael T. Chin; Madeline Nieves-Cintrón; Tony Chen; David J. Marcinek; Gerald W. Dorn; Y. James Kang; Tomas A. Prolla; Luis F. Santana; Peter S. Rabinovitch

Rationale: Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood. Objective: We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic mouse models overexpressing catalase targeted to mitochondria and to peroxisomes. Methods and Results: Angiotensin II increases mitochondrial ROS in cardiomyocytes, concomitant with increased mitochondrial protein carbonyls, mitochondrial DNA deletions, increased autophagy and signaling for mitochondrial biogenesis in hearts of angiotensin II–treated mice. The causal role of mitochondrial ROS in angiotensin II–induced cardiomyopathy is shown by the observation that mice that overexpress catalase targeted to mitochondria, but not mice that overexpress wild-type peroxisomal catalase, are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage induced by angiotensin II, as well as heart failure induced by overexpression of G&agr;q. Furthermore, primary damage to mitochondrial DNA, induced by zidovudine administration or homozygous mutation of mitochondrial polymerase &ggr;, is also shown to contribute directly to the development of cardiac hypertrophy, fibrosis and failure. Conclusions: These data indicate the critical role of mitochondrial ROS in cardiac hypertrophy and failure and support the potential use of mitochondrial-targeted antioxidants for prevention and treatment of hypertensive cardiomyopathy.


Science | 2013

mTOR Inhibition Alleviates Mitochondrial Disease in a Mouse Model of Leigh Syndrome

Simon C. Johnson; Melana E. Yanos; Ernst Bernhard Kayser; Albert Quintana; Maya Sangesland; Anthony Castanza; Jessica Hui; Valerie Z. Wall; Arni Gagnidze; Kelly Oh; Brian M. Wasko; Fresnida J. Ramos; Richard D. Palmiter; Peter S. Rabinovitch; Philip G. Morgan; Margaret M. Sedensky; Matt Kaeberlein

More from mTOR Leigh syndrome is a rare, untreatable, inherited neurodegenerative disease in children that is caused by functional disruption of mitochondria, the cells energy-producing organelles. Johnson et al. (p. 1524, published online 14 November; see Perspective by Vafai and Mootha) show that rapamycin, a drug used clinically as an immunosuppressant and for treatment of certain cancers, delayed the onset and progression of neurological symptoms in a mouse model of Leigh syndrome and significantly extended survival of the animals. Rapamycin inhibits the so-called “mTOR” signaling pathway, which is currently under intense study because it plays a contributory role in many common diseases. A drug in clinical use for other disorders delays progression of an untreatable mitochondrial disease in knockout mice. [Also see Perspective by Vafai and Mootha] Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. We found that rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, robustly enhances survival and attenuates disease progression in a mouse model of Leigh syndrome. Administration of rapamycin to these mice, which are deficient in the mitochondrial respiratory chain subunit Ndufs4 [NADH dehydrogenase (ubiquinone) Fe-S protein 4], delays onset of neurological symptoms, reduces neuroinflammation, and prevents brain lesions. Although the precise mechanism of rescue remains to be determined, rapamycin induces a metabolic shift toward amino acid catabolism and away from glycolysis, alleviating the buildup of glycolytic intermediates. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.


Aging Cell | 2013

Molecular mechanisms underlying genotype-dependent responses to dietary restriction

Jennifer Schleit; Simon C. Johnson; Christopher F. Bennett; Marissa Simko; Natalie Trongtham; Anthony Castanza; Edward J. Hsieh; Brian M. Wasko; Joe R. Delaney; George L. Sutphin; Daniel B. Carr; Christopher J. Murakami; Autumn Tocchi; Bo Xian; Weiyang Chen; Tao Yu; Sarani Goswami; Sean Higgins; Mollie Holmberg; Ki-Soo Jeong; Jin R. Kim; Shannon Klum; Eric Liao; Michael S. Lin; Winston Lo; Hillary Miller; Brady Olsen; Zhao J. Peng; Tom Pollard; Prarthana Pradeep

Dietary restriction (DR) increases lifespan and attenuates age‐related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large‐scale effort to define molecular mechanisms that underlie genotype‐specific responses to DR. The effect of DR on lifespan was determined for 166 single gene deletion strains in Saccharomyces cerevisiae. Resulting changes in mean lifespan ranged from a reduction of 79% to an increase of 103%. Vacuolar pH homeostasis, superoxide dismutase activity, and mitochondrial proteostasis were found to be strong determinants of the response to DR. Proteomic analysis of cells deficient in prohibitins revealed induction of a mitochondrial unfolded protein response (mtUPR), which has not previously been described in yeast. Mitochondrial proteotoxic stress in prohibitin mutants was suppressed by DR via reduced cytoplasmic mRNA translation. A similar relationship between prohibitins, the mtUPR, and longevity was also observed in Caenorhabditis elegans. These observations define conserved molecular processes that underlie genotype‐dependent effects of DR that may be important modulators of DR in higher organisms.


Aging Cell | 2011

Sir2 deletion prevents lifespan extension in 32 long-lived mutants

Joe R. Delaney; George L. Sutphin; Ben Dulken; Sylvia Sim; Jin R. Kim; Brett Robison; Jennifer Schleit; Christopher J. Murakami; Daniel B. Carr; Elroy H. An; Eunice Choi; Annie Chou; Marissa Fletcher; Monika Jelic; Bin Liu; Daniel Lockshon; Diana N. Pak; Qi Peng; Zhao J. Peng; Kim M. Pham; Michael Sage; Amrita Solanky; Kristan K. Steffen; Mitsuhiro Tsuchiya; Scott Tsuchiyama; Simon C. Johnson; Chris Raabe; Yousin Suh; Zhongjun Zhou; Xinguang Liu

Activation of Sir2 orthologs is proposed to increase lifespan downstream of dietary restriction. Here, we describe an examination of the effect of 32 different lifespan‐extending mutations and four methods of DR on replicative lifespan (RLS) in the short‐lived sir2Δ yeast strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce rapidly by a mechanism distinct from that of wild‐type cells. They also demonstrate that failure to observe lifespan extension in a short‐lived background, such as cells or animals lacking sirtuins, should be interpreted with caution.


Interdisciplinary Topics in Gerontology | 2015

Modulating mTOR in Aging and Health

Simon C. Johnson; Maya Sangesland; Matt Kaeberlein; Peter S. Rabinovitch

The physiological responses to nutrient availability play a central role in aging and disease. Genetic and pharmacological studies have identified highly conserved cellular signaling pathways that influence aging by regulating the interface between nutrient and hormone cues and cellular growth and maintenance. Among these pathways, the mechanistic target of rapamycin (mTOR) has been most reproducibly shown to modulate aging in evolutionarily diverse organisms as reduction in mTOR activity extends life span from yeast to rodents. mTOR has been shown to play a role in a broad range of diseases, and is of particular interest to human health and aging due to the availability of clinically approved pharmacological agents targeting the mTOR complexes and other components of the mTOR signaling network. Characterizing the role of mTOR in aging and health promises to provide new avenues for intervention in human aging and disease through modulation of this signaling pathway.


Science Translational Medicine | 2013

Preserving Youth: Does Rapamycin Deliver?

Simon C. Johnson; George M. Martin; Peter S. Rabinovitch; Matt Kaeberlein

Research suggests that the drug rapamycin slows mammalian aging, but a provocative new study has gained attention by claiming to show it does not. Research suggests that the drug rapamycin slows mammalian aging, but a provocative new study has gained attention by claiming to show it does not.


Aging Cell | 2016

Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

Alexander Teumer; Qibin Qi; Maria Nethander; Hugues Aschard; Stefania Bandinelli; Marian Beekman; Sonja I. Berndt; Martin Bidlingmaier; Linda Broer; Anne R. Cappola; Gian Paolo Ceda; Stephen J. Chanock; Ming-Huei Chen; Tai C. Chen; Yii-Der Ida Chen; Jonathan H. Chung; Fabiola Del Greco Miglianico; Joel Eriksson; Luigi Ferrucci; Nele Friedrich; Carsten Gnewuch; Mark O. Goodarzi; Niels Grarup; Tingwei Guo; Elke Hammer; Richard B. Hayes; Andrew A. Hicks; Albert Hofman; Jeanine J. Houwing-Duistermaat; Frank B. Hu

The growth hormone/insulin‐like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF‐related proteins including IGF‐I and IGF‐binding protein‐3 (IGFBP‐3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF‐I and IGFBP‐3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype–phenotype associations between men and women, were found only for associations of IGFBP‐3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF‐I and IGFBP‐3 concentrations. The IGF‐I‐decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity‐associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF‐I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF‐I‐ and IGFBP‐3‐associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF‐I and IGFBP‐3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity‐associated loci.


Frontiers in Genetics | 2015

Dose-dependent effects of mTOR inhibition on weight and mitochondrial disease in mice

Simon C. Johnson; Melana E. Yanos; Alessandro Bitto; Anthony Castanza; Arni Gagnidze; Brenda Gonzalez; Kanav Gupta; Jessica Hui; Conner Jarvie; Brittany M. Johnson; Nicolas Letexier; Lanny McCanta; Maya Sangesland; Oliver Tamis; Alex Van Den Ende; Peter S. Rabinovitch; Yousin Suh; Matt Kaeberlein

Rapamycin extends lifespan and attenuates age-related pathologies in mice when administered through diet at 14 parts per million (PPM). Recently, we reported that daily intraperitoneal injection of rapamycin at 8 mg/kg attenuates mitochondrial disease symptoms and progression in the Ndufs4 knockout mouse model of Leigh Syndrome. Although rapamycin is a widely used pharmaceutical agent dosage has not been rigorously examined and no dose-response profile has been established. Given these observations we sought to determine if increased doses of oral rapamycin would result in more robust impact on mTOR driven parameters. To test this hypothesis, we compared the effects of dietary rapamycin at doses ranging from 14 to 378 PPM on developmental weight in control and Ndufs4 knockout mice and on health and survival in the Ndufs4 knockout model. High dose rapamycin was well tolerated, dramatically reduced weight gain during development, and overcame gender differences. The highest oral dose, approximately 27-times the dose shown to extend murine lifespan, increased survival in Ndufs4 knockout mice similarly to daily rapamycin injection without observable adverse effects. These findings have broad implications for the effective use of rapamycin in murine studies and for the translational potential of rapamycin in the treatment of mitochondrial disease. This data, further supported by a comparison of available literature, suggests that 14 PPM dietary rapamycin is a sub-optimal dose for targeting mTOR systemically in mice. Our findings suggest that the role of mTOR in mammalian biology may be broadly underestimated when determined through treatment with rapamycin at commonly used doses.


International Journal of Cancer | 2014

Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice: evidence for stromal induction of hepatocellular carcinoma.

Jocelyn H. Wright; Melissa M. Johnson; Masami Shimizu-Albergine; Renay L. Bauer; Brian J. Hayes; James Surapisitchat; Kelly L. Hudkins; Kimberly J. Riehle; Simon C. Johnson; Matthew M. Yeh; Theodor K. Bammler; Richard P. Beyer; Debra G. Gilbertson; Charles E. Alpers; Nelson Fausto; Jean S. Campbell

Cirrhosis is the primary risk factor for the development of hepatocellular carcinoma (HCC), yet the mechanisms by which cirrhosis predisposes to carcinogenesis are poorly understood. Using a mouse model that recapitulates many aspects of the pathophysiology of human liver disease, we explored the mechanisms by which changes in the liver microenvironment induce dysplasia and HCC. Hepatic expression of platelet‐derived growth factor C (PDGF‐C) induces progressive fibrosis, chronic inflammation, neoangiogenesis and sinusoidal congestion, as well as global changes in gene expression. Using reporter mice, immunofluorescence, immunohistochemistry and liver cell isolation, we demonstrate that receptors for PDGF‐CC are localized on hepatic stellate cells (HSCs), which proliferate, and transform into myofibroblast‐like cells that deposit extracellular matrix and lead to production of growth factors and cytokines. We demonstrate induction of cytokine genes at 2 months, and stromal cell‐derived hepatocyte growth factors that coincide with the onset of dysplasia at 4 months. Our results support a paracrine signaling model wherein hepatocyte‐derived PDGF‐C stimulates widespread HSC activation throughout the liver leading to chronic inflammation, liver injury and architectural changes. These complex changes to the liver microenvironment precede the development of HCC. Further, increased PDGF‐CC levels were observed in livers of patients with nonalcoholic fatty steatohepatitis and correlate with the stage of disease, suggesting a role for this growth factor in chronic liver disease in humans. PDGF‐C transgenic mice provide a unique model for the in vivo study of tumor–stromal interactions in the liver.


Frontiers in Genetics | 2013

DNA damage accumulation and TRF2 degradation in atypical Werner syndrome fibroblasts with LMNA mutations.

Bidisha Saha; Galynn Zitnik; Simon C. Johnson; Quyen T X Nguyen; Rosa Ana Risques; George M. Martin; Junko Oshima

Segmental progeroid syndromes are groups of disorders with multiple features suggestive of accelerated aging. One subset of adult-onset progeroid syndromes, referred to as atypical Werner syndrome, is caused by mutations in the LMNA gene, which encodes a class of nuclear intermediate filaments, lamin A/C. We previously described rapid telomere attrition and accelerated replicative senescence in cultured fibroblasts overexpressing mutant lamin A. In this study, we investigated the cellular phenotypes associated with accelerated telomere shortening in LMNA mutant primary fibroblasts. In early passage primary fibroblasts with R133L or L140R LMNA mutations, shelterin protein components were already reduced while cells still retained telomere lengths comparable to those of controls. There was a significant inverse correlation between the degree of abnormal nuclear morphology and the level of TRF2, a shelterin subunit, suggesting a potential causal relationship. Stabilization of the telomeres via the introduction of the catalytic subunit of human telomerase, hTERT (human telomerase reverse transcriptase), did not prevent degradation of shelterin components, indicating that reduced TRF2 in LMNA mutants is not mediated by short telomeres. Interestingly, γ-H2AX foci (reflecting double strand DNA damage) in early passage LMNA mutant primary fibroblasts and LMNA mutant hTERT fibroblasts were markedly increased in non-telomeric regions of DNA. Our results raise the possibility that mutant lamin A/C causes global genomic instability with accumulation of non-telomeric DNA damage as an early event, followed by TRF2 degradation and telomere shortening.

Collaboration


Dive into the Simon C. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Hayes

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Brian M. Wasko

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge