Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon C. Williams is active.

Publication


Featured researches published by Simon C. Williams.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia.

Dmitry Terentyev; Serge Viatchenko-Karpinski; Inna Györke; Pompeo Volpe; Simon C. Williams; Sandor Gyorke

Calsequestrin is a high-capacity Ca-binding protein expressed inside the sarcoplasmic reticulum (SR), an intracellular Ca release and storage organelle in muscle. Mutations in the cardiac calsequestrin gene (CSQ2) have been linked to arrhythmias and sudden death. We have used Ca-imaging and patch-clamp methods in combination with adenoviral gene transfer strategies to explore the function of CSQ2 in adult rat heart cells. By increasing or decreasing CSQ2 levels, we showed that CSQ2 not only determines the Ca storage capacity of the SR but also positively controls the amount of Ca released from this organelle during excitation–contraction coupling. CSQ2 controls Ca release by prolonging the duration of Ca fluxes through the SR Ca-release sites. In addition, the dynamics of functional restitution of Ca-release sites after Ca discharge were prolonged when CSQ2 levels were elevated and accelerated in the presence of lowered CSQ2 protein levels. Furthermore, profound disturbances in rhythmic Ca transients in myocytes undergoing periodic electrical stimulation were observed when CSQ2 levels were reduced. We conclude that CSQ2 is a key determinant of the functional size and stability of SR Ca stores in cardiac muscle. CSQ2 appears to exert its effects by influencing the local luminal Ca concentration-dependent gating of the Ca-release channels and by acting as both a reservoir and a sink for Ca in SR. The abnormal restitution of Ca-release channels in the presence of reduced CSQ2 levels provides a plausible explanation for ventricular arrhythmia associated with mutations of CSQ2.


Circulation Research | 2006

Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death

Dmitry Terentyev; Alessandra Nori; Massimo Santoro; Serge Viatchenko-Karpinski; Zuzana Kubalova; Inna Györke; Radmila Terentyeva; Srikanth Vedamoorthyrao; Nico A. Blom; Giorgia Valle; Carlo Napolitano; Simon C. Williams; Pompeo Volpe; Silvia G. Priori; Sandor Gyorke

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca2+-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2R33Q in adult rat myocytes led to an increase in excitation–contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca2+-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.


Circulation Research | 2004

Abnormal Calcium Signaling and Sudden Cardiac Death Associated With Mutation of Calsequestrin

Serge Viatchenko-Karpinski; Dmitry Terentyev; Inna Györke; Radmila Terentyeva; Pompeo Volpe; Silvia G. Priori; Carlo Napolitano; Alessandra Nori; Simon C. Williams; Sandor Gyorke

Abstract— Mutations in human cardiac calsequestrin (CASQ2), a high-capacity calcium-binding protein located in the sarcoplasmic reticulum (SR), have recently been linked to effort-induced ventricular arrhythmia and sudden death (catecholaminergic polymorphic ventricular tachycardia). However, the precise mechanisms through which these mutations affect SR function and lead to arrhythmia are presently unknown. In this study, we explored the effect of adenoviral-directed expression of a canine CASQ2 protein carrying the catecholaminergic polymorphic ventricular tachycardia–linked mutation D307H (CASQ2D307H) on Ca2+ signaling in adult rat myocytes. Total CASQ2 protein levels were consistently elevated ≈4-fold in cells infected with adenoviruses expressing either wild-type CASQ2 (CASQ2WT) or CASQ2D307H. Expression of CASQ2D307H reduced the Ca2+ storing capacity of the SR. In addition, the amplitude, duration, and rise time of macroscopic ICa-induced Ca2+ transients and of spontaneous Ca2+ sparks were reduced significantly in myocytes expressing CASQ2D307H. Myocytes expressing CASQ2D307H also displayed drastic disturbances of rhythmic oscillations in [Ca2+]i and membrane potential, with signs of delayed afterdepolarizations when undergoing periodic pacing and exposed to isoproterenol. Importantly, normal rhythmic activity was restored by loading the SR with the low-affinity Ca2+ buffer, citrate. Our data suggest that the arrhythmogenic CASQ2D307H mutation impairs SR Ca2+ storing and release functions and destabilizes the Ca2+-induced Ca2+ release mechanism by reducing the effective Ca2+ buffering inside the SR and/or by altering the responsiveness of the Ca2+ release channel complex to luminal Ca2+. These results establish at the cellular level the pathological link between CASQ2 mutations and the predisposition to adrenergically mediated arrhythmias observed in patients carrying CASQ2 defects.


Cancer Research | 2007

Imaging Tumors with an Albumin-Binding Fab, a Novel Tumor-Targeting Agent

Mark S. Dennis; Hongkui Jin; Debra L. Dugger; Renhui Yang; Leanne McFarland; Annie Ogasawara; Simon C. Williams; Mary J. Cole; Sarajane Ross; Ralph Schwall

Association with albumin as a means to improve biodistribution and tumor deposition of a Fab was investigated using AB.Fab4D5, a bifunctional molecule derived from trastuzumab (HERCEPTIN) capable of binding albumin and tumor antigen HER2 (erbB2) simultaneously. AB.Fab4D5 was compared with trastuzumab and a trastuzumab-derived Fab (Fab4D5) for the ability to target tumors overexpressing HER2 in mouse mammary tumor virus/HER2 allograft models. Biodistribution was monitored using intravital microscopy, histology, and integrated single-photon emission computed tomography/computed tomography analysis. Fab4D5 tumor deposition was characterized by rapid but transient appearance in tumor at 2 h with little retention, followed by rapid accumulation in kidney by 6 h. Trastuzumab was slow to accumulate in tumors and slow to clear from normal tissues, although significant tumor deposition was achieved by 24 h. In contrast, AB.Fab4D5 was observed at 2 h in tumor and its presence was sustained beyond 24 h similar to trastuzumab. Intravital microscopy revealed that at peak tumor accumulation, tumor cell staining by AB.Fab4D5 was more uniform than for Fab4D5 or trastuzumab. Similar tumor deposition was achieved for both AB.Fab4D5 and trastuzumab at 48 h (35.9 +/- 1.8% and 38.2 +/- 3.1% injected dose/g); however, AB.Fab4D5 targeted tumors more rapidly and quickly cleared from blood, leading to a lower overall normal tissue exposure. Importantly, unlike Fab4D5, AB.Fab4D5 did not accumulate in kidney, suggesting that association with albumin leads to an altered route of clearance and metabolism. Rapid targeting, excellent tumor deposition and retention, coupled with high tumor to blood ratios may make AB.Fab an exceptional molecule for imaging and cancer therapy.


Molecular and Cellular Biology | 1997

The ability of C/EBP beta but not C/EBP alpha to synergize with an Sp1 protein is specified by the leucine zipper and activation domain.

Ying-Hue Lee; Simon C. Williams; Mark Baer; Esta Sterneck; Frank J. Gonzalez; Peter F. Johnson

The rat CYP2D5 P-450 gene is activated in the liver during postnatal development. We previously showed that liver-specific transcription of the CYP2D5 gene is dictated by a proximal promoter element, termed 2D5, that is composed of a binding site for Sp1 or a related factor, and an adjacent cryptic C/EBP (CCAAT/enhancer-binding protein) site. Despite the fact that both C/EBP alpha and C/EBP beta are expressed abundantly in liver, only C/EBP beta is capable of stimulating the 2D5 promoter in HepG2 hepatocarcinoma cells. In addition, activation of the 2D5 promoter by C/EBP beta is completely dependent on the presence of the Sp1 site. Domain switch experiments reveal that C/EBP beta proteins containing either the leucine zipper or the activation domain of C/EBP alpha are unable to stimulate the 2D5 promoter yet are fully capable of transactivating an artificial promoter bearing a high-affinity C/EBP site. Thus, the leucine zipper and the activation domain of C/EBP beta are absolutely required to support transactivation of the 2D5 promoter. Using Drosophila cells that lack endogenous Sp1 activity, we show that the serine/threonine- and glutamine-rich activation domains A and B of Sp1 are required for efficient cooperatively with C/EBP beta. Furthermore, analysis of c/ebp beta-deficient mice shows that mutant animals are defective in expression of a murine CYP2D5 homolog in hepatic cells, confirming the selective ability of C/EBP beta to activate this liver-specific P-450 gene in vivo. Our findings illustrate that two members of a transcription factor family can achieve distinct target gene specificities through differential interactions with a cooperating Sp1 protein.


Cellular Microbiology | 2006

Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling

E. K. Shiner; Dmitry Terentyev; A. Bryan; S. Sennoune; R. Martinez-Zaguilan; Guigen Li; Sandor Gyorke; Simon C. Williams; Kendra P. Rumbaugh

The opportunistic pathogen Pseudomonas aeruginosa utilizes a cell density‐dependent signalling phenomenon known as quorum sensing (QS) to regulate several virulence factors needed for infection. Acylated homoserine lactones, or autoinducers, are the primary signal molecules that mediate QS in P. aeruginosa. The autoinducer N‐3O‐dodecanoyl‐homoserine lactone (3O‐C12) exerts effects on mammalian cells, including upregulation of pro‐inflammatory mediators and induction of apoptosis. However, the mechanism(s) by which 3O‐C12 affects mammalian cell responses is unknown. Here we report that 3O‐C12 induces apoptosis and modulates the expression of immune mediators in murine fibroblasts and human vascular endothelial cells (HUVEC). The effects of 3O‐C12 were accompanied by increases in cytosolic calcium levels that were mobilized from intracellular stores in the endoplasmic reticulum (ER). Calcium release was blocked by an inhibitor of phospholipase C, suggesting that release occurred through inositol triphosphate (IP3) receptors in the ER. Apoptosis, but not immunodulatory gene activation, was blocked when 3O‐C12‐exposed cells were co‐incubated with inhibitors of calcium signalling. This study indicates that 3O‐C12 can activate at least two independent signal transduction pathways in mammalian cells, one that involves increases in intracellular calcium levels and leads to apoptosis, and a second pathway that results in modulation of the inflammatory response.


Journal of Bacteriology | 2008

Peroxisome Proliferator-Activated Receptors Mediate Host Cell Proinflammatory Responses to Pseudomonas aeruginosa Autoinducer

Aruna Jahoor; Rashila Patel; Amanda Bryan; Catherine Do; Jay Krier; Chase Watters; Walter Wahli; Guigen Li; Simon C. Williams; Kendra P. Rumbaugh

The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.


Journal of Biological Chemistry | 2000

The C/EBP bZIP Domain Can Mediate Lipopolysaccharide Induction of the Proinflammatory Cytokines Interleukin-6 and Monocyte Chemoattractant Protein-1

Hsien Ming Hu; Qiang Tian; Mark Baer; Chauncey J. Spooner; Simon C. Williams; Peter F. Johnson; Richard C. Schwartz

C/EBPα, β, and δ are all expressed by bone marrow-derived macrophages. Ectopic expression of any of these transcription factors is sufficient to confer lipopolysaccharide (LPS)-inducible expression of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) to a B lymphoblast cell line, which normally lacks C/EBP factors and does not display LPS induction of proinflammatory cytokines. Thus, the activities of C/EBPα, β, and δ are redundant in regard to expression of IL-6 and MCP-1. Surprisingly, the bZIP region of C/EBPβ, which lacks any previously described activation domains, can also confer LPS-inducible expression of IL-6 and MCP-1 in stable transfectants. Transient transfections reveal that the bZIP regions of C/EBPβ, C/EBPδ, and, to a lesser extent, C/EBPα can activate the IL-6 promoter and augment its induction by LPS. Furthermore, the transdominant inhibitor, LIP, can activate expression from the IL-6 promoter. The ability of the C/EBPβ bZIP region to activate the IL-6 promoter in transient transfections is completely dependent upon an intact NF-κB-binding site, supporting a model where the bZIP protein primarily functions to augment the activity of NF-κB. Replacement of the leucine zipper of C/EBPβ with that of GCN4 yields a chimeric protein that can dimerize and specifically bind to a C/EBP consensus sequence, but shows a markedly reduced ability to activate IL-6 and MCP-1 expression. These results implicate the leucine zipper domain in some function other than dimerization with known C/EBP family members, and suggest that C/EBP redundancy in regulating cytokine expression may result from their highly related bZIP regions.


Biophysical Journal | 2008

Modulation of SR Ca Release by Luminal Ca and Calsequestrin in Cardiac Myocytes: Effects of CASQ2 Mutations Linked to Sudden Cardiac Death

Dmitry Terentyev; Zuzana Kubalova; Giorgia Valle; Alessandra Nori; Srikanth Vedamoorthyrao; Radmila Terentyeva; Serge Viatchenko-Karpinski; Donald M. Bers; Simon C. Williams; Pompeo Volpe; Sandor Gyorke

Cardiac calsequestrin (CASQ2) is an intrasarcoplasmic reticulum (SR) low-affinity Ca-binding protein, with mutations that are associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). To better understand how CASQ2 mutants cause CPVT, we expressed two CPVT-linked CASQ2 mutants, a truncated protein (at G112+5X, CASQ2(DEL)) or CASQ2 containing a point mutation (CASQ2(R33Q)), in canine ventricular myocytes and assessed their effects on Ca handling. We also measured CASQ2-CASQ2 variant interactions using fluorescence resonance transfer in a heterologous expression system, and evaluated CASQ2 interaction with triadin. We found that expression of CASQ2(DEL) or CASQ2(R33Q) altered myocyte Ca signaling through two different mechanisms. Overexpressing CASQ2(DEL) disrupted the CASQ2 polymerization required for high capacity Ca binding, whereas CASQ2(R33Q) compromised the ability of CASQ2 to control ryanodine receptor (RyR2) channel activity. Despite profound differences in SR Ca buffering strengths, local Ca release terminated at the same free luminal [Ca] in control cells, cells overexpressing wild-type CASQ2 and CASQ2(DEL)-expressing myocytes, suggesting that a decline in [Ca](SR) is a signal for RyR2 closure. Importantly, disrupting interactions between the RyR2 channel and CASQ2 by expressing CASQ2(R33Q) markedly lowered the [Ca](SR) threshold for Ca release termination. We conclude that CASQ2 in the SR determines the magnitude and duration of Ca release from each SR terminal by providing both a local source of releasable Ca and by effects on luminal Ca-dependent RyR2 gating. Furthermore, two CPVT-inducing CASQ2 mutations, which cause mechanistically different defects in CASQ2 and RyR2 function, lead to increased diastolic SR Ca release events and exhibit a similar CPVT disease phenotype.


Molecular and Cellular Endocrinology | 1999

Transcriptional regulation of the StAR gene.

Adam J. Reinhart; Simon C. Williams; Douglas M. Stocco

The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step of steroidogenesis. In steroidogenic tissues, the StAR gene is regulated acutely by trophic hormone through a cAMP second messenger pathway. Thus, the gene encoding StAR must be finely regulated so that it is expressed in steroidogenic tissues at the proper time in development, and must be rapidly induced in response to cAMP stimulation. We have summarized the available information concerning the regulation of StAR mRNA levels including promoter mapping and transactivation studies. We also discuss the various transcription factors which have been implicated in the regulation of the StAR gene thus far, and propose models of how StAR transcription may be regulated.

Collaboration


Dive into the Simon C. Williams's collaboration.

Top Co-Authors

Avatar

Peter F. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kendra P. Rumbaugh

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Györke

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Mark Baer

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Demet Nalbant

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Guigen Li

Texas Tech University

View shared research outputs
Researchain Logo
Decentralizing Knowledge