Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Heales is active.

Publication


Featured researches published by Simon Heales.


The Lancet | 2002

Association between mitochondrial dysfunction and severity and outcome of septic shock.

David Brealey; Michael P. Brand; Iain Hargreaves; Simon Heales; John M. Land; Ryszard T. Smolenski; Nathan A. Davies; Chris E. Cooper; Mervyn Singer

BACKGROUND Sepsis-induced multiple organ failure is the major cause of mortality and morbidity in critically ill patients. However, the precise mechanisms by which this dysfunction is caused remain to be elucidated. We and others have shown raised tissue oxygen tensions in septic animals and human beings, suggesting reduced ability of the organs to use oxygen. Because ATP production by mitochondrial oxidative phosphorylation accounts for more than 90% of total oxygen consumption, we postulated that mitochondrial dysfunction results in organ failure, possibly due to nitric oxide, which is known to inhibit mitochondrial respiration in vitro and is produced in excess in sepsis. METHODS We did skeletal muscle biopsies on 28 critically ill septic patients within 24 h of admission to intensive care, and on nine control patients undergoing elective hip surgery. The biopsy samples were analysed for respiratory-chain activity (complexes I-IV), ATP concentration, reduced glutathione (an intracellular antioxidant) concentration, and nitrite/nitrate concentrations (a marker of nitric oxide production). FINDINGS Skeletal muscle ATP concentrations were significantly lower in the 12 patients with sepsis who subsequently died than in the 16 septic patients who survived (p=0.0003) and in controls (p=0.05). Complex I activity had a significant inverse correlation with norepinephrine requirements (a proxy for shock severity, p=0.0003) and nitrite/nitrate concentrations (p=0.0004), and a significant positive correlation with concentrations of reduced glutathione (p=0.006) and ATP (p=0.03). INTERPRETATION In septic patients, we found an association between nitric oxide overproduction, antioxidant depletion, mitochondrial dysfunction, and decreased ATP concentrations that relate to organ failure and eventual outcome. These data implicate bioenergetic failure as an important pathophysiological mechanism underlying multiorgan dysfunction.


Journal of Neurochemistry | 2002

Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases

Juan P. Bolaños; Angeles Almeida; Victoria C. Stewart; Stephan Peuchen; John M. Land; John B. Clark; Simon Heales

Abstract: Within the CNS and under normal conditions, nitric oxide (•NO) appears to be an important physiological signalling molecule. Its ability to increase cyclic GMP concentration suggests that •NO is implicated in the regulation of important metabolic pathways in the brain. Under certain circumstances •NO synthesis may be excessive and •NO may become neurotoxic. Excessive glutamate‐receptor stimulation may lead to neuronal death through a mechanism implicating synthesis of both •NO and superoxide (O2•−) and hence peroxynitrite (ONOO−) formation. In response to lipopolysaccharide and cytokines, glial cells may also be induced to synthesize large amounts of •NO, which may be deleterious to the neighbouring neurones and oligodendrocytes. The precise mechanism of •NO neurotoxicity is not fully understood. One possibility is that it may involve neuronal energy deficiency. This may occur by ONOO− interfering with key enzymes of the tricarboxylic acid cycle, the mitochondrial respiratory chain, mitochondrial calcium metabolism, or DNA damage with subsequent activation of the energy‐consuming pathway involving poly(ADP‐ribose) synthetase. Possible mechanisms whereby ONOO− impairs the mitochondrial respiratory chain and the relevance for neurotoxicity are discussed. The intracellular content of reduced glutathione also appears important in determining the sensitivity of cells to ONOO− production. It is concluded that neurotoxicity elicited by excessive •NO production may be mediated by mitochondrial dysfunction leading to an energy deficiency state.


Journal of Neurochemistry | 2002

Effect of Peroxynitrite on the Mitochondrial Respiratory Chain: Differential Susceptibility of Neurones and Astrocytes in Primary Culture

Juan P. Bolaños; Simon Heales; John M. Land; John B. Clark

Abstract: The effect of the neurotoxic nitric oxide derivative, the peroxynitrite anion (ONOO−), on the activity of the mitochondrial respiratory chain complexes in cultured neurones and astrocytes was studied. A single exposure of the neurones to ONOO− (initial concentrations of 0.01–2.0 mM) caused, after a subsequent 24‐h incubation, a dose‐dependent decrease in succinate‐cytochrome c reductase (60% at 0.5 mM) and in cytochrome c oxidase (52% at 0.5 mM) activities. NADH‐ubiquinone‐1 reductase was unaffected. In astrocytes, the activity of the mitochondrial complexes was not affected up to 2 mM ONOO−. Citrate synthase was unaffected in both cell types under all conditions studied. However, lactate dehydrogenase activity released to the culture medium was increased by ONOO− in a dose‐dependent manner (40% at 0.5 mM ONOO−) from the neurones but not from the astrocytes. Neuronal glutathione concentration decreased by 39% at 0.1 mM ONOO−, but astrocytic glutathione was not affected up to 2 mM ONOO−. In isolated brain mitochondria, only succinate‐cytochrome c reductase activity was affected (22% decrease at 1 mM ONOO−). We conclude that the acute exposure of ONOO− selectively damages neurones, whereas astrocytes remain unaffected. Intracellular glutathione appears to be an important factor for ameliorating ONOO−‐mediated mitochondrial damage. This study supports the hypothesis that the neurotoxicity of nitric oxide is mediated through mitochondrial dysfunction.


Biochimica et Biophysica Acta | 1999

Nitric oxide, mitochondria and neurological disease.

Simon Heales; Juan P. Bolaños; Victoria C. Stewart; Paul S. Brookes; John M. Land; John B. Clark

Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neurological disorders, such as Parkinsons disease, Alzheimers disease, multiple sclerosis, stroke and amyotrophic lateral sclerosis. There is also a growing body of evidence to implicate excessive or inappropriate generation of nitric oxide (NO) in these disorders. It is now well documented that NO and its toxic metabolite, peroxynitrite (ONOO-), can inhibit components of the mitochondrial respiratory chain leading, if damage is severe enough, to a cellular energy deficiency state. Within the brain, the susceptibility of different brain cell types to NO and ONOO- exposure may be dependent on factors such as the intracellular reduced glutathione (GSH) concentration and an ability to increase glycolytic flux in the face of mitochondrial damage. Thus neurones, in contrast to astrocytes, appear particularly vulnerable to the action of these molecules. Following cytokine exposure, astrocytes can increase NO generation, due to de novo synthesis of the inducible form of nitric oxide synthase (NOS). Whilst the NO/ONOO- so formed may not affect astrocyte survival, these molecules may diffuse out to cause mitochondrial damage, and possibly cell death, to other cells, such as neurones, in close proximity. Evidence is now available to support this scenario for neurological disorders, such as multiple sclerosis. In other conditions, such as ischaemia, increased availability of glutamate may lead to an activation of a calcium-dependent nitric oxide synthase associated with neurones. Such increased/inappropriate NO formation may contribute to energy depletion and neuronal cell death. The evidence available for NO/ONOO--mediated mitochondrial damage in various neurological disorders is considered and potential therapeutic strategies are proposed.


Journal of Neurochemistry | 2002

Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes.

Juan P. Bolaños; S Peuchen; Simon Heales; John M. Land; Jb Clark

Abstract: The Ca2+‐independent form of nitric oxide synthase was induced in rat neonatal astrocytes in primary culture by incubation with lipopolysaccharide (1 µg/ml) plus interferon‐γ (100 U/ml), and the activities of the mitochondrial respiratory chain components were assessed. Incubation for 18 h produced 25% inhibition of cytochrome c oxidase activity. NADH‐ubiquinone‐1 reductase (complex I) and succinate‐cytochrome c reductase (complex II–III) activities were not affected. Prolonged incubation for 36 h gave rise to a 56% reduction of cytochrome c oxidase activity and a 35% reduction in succinate‐cytochrome c reductase activity, but NADH‐ubiquinone‐1 reductase activity was unchanged. Citrate synthase activity was not affected by any of these conditions. The inhibition of the activities of these mitochondrial respiratory chain complexes was prevented by incubation in the presence of the specific nitric oxide synthase inhibitor NG‐monomethyl‐l‐arginine. The lipopolysaccharide/interferon‐γ treatment of the astrocytes produced an increase in glycolysis and lactate formation. These results suggest that inhibition of the mitochondrial respiratory chain after induction of astrocytic nitric oxide synthase may represent a mechanism for nitric oxide‐mediated neurotoxicity.


Molecular and Cellular Biology | 2004

Neuroprotective Role of the Reaper-Related Serine Protease HtrA2/Omi Revealed by Targeted Deletion in Mice

L. Miguel Martins; Alastair D. Morrison; Kristina Klupsch; Valentina Fedele; Nicoleta Moisoi; Peter Teismann; Alejandro Abuin; Evelyn Grau; Martin Geppert; George P. Livi; Caretha L. Creasy; Alison Martin; Iain Hargreaves; Simon Heales; Hitoshi Okada; Sebastian Brandner; Jörg B. Schulz; Tak W. Mak; Julian Downward

ABSTRACT The serine protease HtrA2/Omi is released from the mitochondrial intermembrane space following apoptotic stimuli. Once in the cytosol, HtrA2/Omi has been implicated in promoting cell death by binding to inhibitor of apoptosis proteins (IAPs) via its amino-terminal Reaper-related motif, thus inducing caspase activity, and also in mediating caspase-independent death through its own protease activity. We report here the phenotype of mice entirely lacking expression of HtrA2/Omi due to targeted deletion of its gene, Prss25. These animals, or cells derived from them, show no evidence of reduced rates of cell death but on the contrary suffer loss of a population of neurons in the striatum, resulting in a neurodegenerative disorder with a parkinsonian phenotype that leads to death of the mice around 30 days after birth. The phenotype of these mice suggests that it is the protease function of this protein and not its IAP binding motif that is critical. This conclusion is reinforced by the finding that simultaneous deletion of the other major IAP binding protein, Smac/DIABLO, does not obviously alter the phenotype of HtrA2/Omi knockout mice or cells derived from them. Mammalian HtrA2/Omi is therefore likely to function in vivo in a manner similar to that of its bacterial homologues DegS and DegP, which are involved in protection against cell stress, and not like the proapoptotic Reaper family proteins in Drosophila melanogaster.


PLOS ONE | 2008

PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons

Alison Wood-Kaczmar; Sonia Gandhi; Zhi Yao; Andrey Y. Abramov; Erik Miljan; Gregory Keen; Lee Stanyer; Iain Hargreaves; Kristina Klupsch; Emma Deas; Julian Downward; Louise Mansfield; Parmjit S. Jat; Joanne Taylor; Simon Heales; Michael R. Duchen; David S. Latchman; Sarah J. Tabrizi; Nicholas W. Wood

Parkinsons disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinsons disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.


Free Radical Biology and Medicine | 1996

Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione

Juan P. Bolaños; Simon Heales; S Peuchen; Jane E. Barker; John M. Land; John B. Clark

In this study we have investigated the mechanisms leading to mitochondrial damage in cultured neurons following sustained exposure to nitric oxide. Thus, the effects upon neuronal mitochondrial respiratory chain complex activity and reduced glutathione concentration following exposure to either the nitric oxide donor, S-nitroso-N-acetylpenicillamine, or to nitric oxide releasing astrocytes were assessed. Incubation with S-nitroso-N-acetylpenicillamine (1 mM) for 24 h decreased neuronal glutathione concentration by 57%, and this effect was accompanied by a marked decrease of complex I (43%), complex II-III (63%), and complex IV (41%) activities. Incubation of neurons with the glutathione synthesis inhibitor, L-buthionine-[S,R]-sulfoximine caused a major depletion of neuronal glutathione (93%), an effect that was accompanied by a marked loss of complex II-III (60%) and complex IV (41%) activities, although complex I activity was only mildly decreased (34%). In an attempt to approach a more physiological situation, we studied the effects upon glutathione status and mitochondrial respiratory chain activity of neurons incubated in coculture with nitric oxide releasing astrocytes. Astrocytes were activated by incubation with lipopolysaccharide/interferon-gamma for 18 h, thereby inducing nitric oxide synthase and, hence, a continuous release of nitric oxide. Coincubation for 24 h of activated astrocytes with neurons caused a limited loss of complex IV activity and had no effect on the activities of complexes I or II-III. However, neurons exposed to astrocytes had a 1.7-fold fold increase in glutathione concentration compared to neurons cultured alone. Under these coculture conditions, the neuronal ATP concentration was modestly reduced (14%). This loss of ATP was prevented by the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine. These results suggest that the neuronal mitochondrial respiratory chain is damaged by sustained exposure to nitric oxide and that reduced glutathione may be an important defence against such damage.


Molecular Aspects of Medicine | 2002

Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function.

Malcolm J. Jackson; Sergio Papa; Juan P. Bolaños; Richard Bruckdorfer; Harald Carlsen; Ruan Elliott; Jacoba Flier; Helen R. Griffiths; Simon Heales; Birgit Holst; Michele Lorusso; Elizabeth K. Lund; Jan Øivind Moskaug; Ulrich Moser; Marco Di Paola; M. Cristina Polidori; Anna Signorile; Wilhelm Stahl; José Viña-Ribes; Siân B. Astley

Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs


Neuroscience Letters | 1995

Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration

Guy C. Brown; Juan P. Bolaños; Simon Heales; John B. Clark

Cultured astrocytes, activated to express the inducible form of nitric oxide synthase, produced up to 1 microM nitric oxide (NO) measured by a NO-selective electrode, while non-activated cells produced no detectable NO. The production of NO was associated with an inhibition of cellular respiration, measured simultaneously by an oxygen electrode. The inhibition of respiration was rapidly reversed by inhibiting the NO synthase or by binding the NO with haemoglobin. The respiratory inhibition had an NO, oxygen and substrate dependence consistent with NO-inhibition at cytochrome oxidase. This is the first demonstration that cells can reversibly inhibit mitochondrial respiration via NO production. This inhibition is large and potentially important in a range of pathophysiological conditions.

Collaboration


Dive into the Simon Heales's collaboration.

Top Co-Authors

Avatar

John M. Land

University College London

View shared research outputs
Top Co-Authors

Avatar

Iain Hargreaves

University College London

View shared research outputs
Top Co-Authors

Avatar

John B. Clark

University College London

View shared research outputs
Top Co-Authors

Avatar

Derek Burke

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Pope

University College London

View shared research outputs
Top Co-Authors

Avatar

Peter Clayton

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Kevin Mills

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Prunty

Great Ormond Street Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge