Simon J. Anthony
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon J. Anthony.
Mbio | 2013
Simon J. Anthony; Jonathan H. Epstein; Kris A. Murray; Isamara Navarrete-Macias; Carlos Zambrana-Torrelio; Alexander Solovyov; Rafael Ojeda-Flores; Nicole C. Arrigo; Ariful Islam; S. A. Khan; Parviez R. Hosseini; Tiffany L. Bogich; Kevin J. Olival; Maria Sanchez-Leon; William B. Karesh; Tracey Goldstein; Stephen P. Luby; Sanchez-Leon Morse; Jonna A. K. Mazet; Peter Daszak; W. Ian Lipkin
ABSTRACT The majority of emerging zoonoses originate in wildlife, and many are caused by viruses. However, there are no rigorous estimates of total viral diversity (here termed “virodiversity”) for any wildlife species, despite the utility of this to future surveillance and control of emerging zoonoses. In this case study, we repeatedly sampled a mammalian wildlife host known to harbor emerging zoonotic pathogens (the Indian Flying Fox, Pteropus giganteus) and used PCR with degenerate viral family-level primers to discover and analyze the occurrence patterns of 55 viruses from nine viral families. We then adapted statistical techniques used to estimate biodiversity in vertebrates and plants and estimated the total viral richness of these nine families in P. giganteus to be 58 viruses. Our analyses demonstrate proof-of-concept of a strategy for estimating viral richness and provide the first statistically supported estimate of the number of undiscovered viruses in a mammalian host. We used a simple extrapolation to estimate that there are a minimum of 320,000 mammalian viruses awaiting discovery within these nine families, assuming all species harbor a similar number of viruses, with minimal turnover between host species. We estimate the cost of discovering these viruses to be ~
Proceedings of the National Academy of Sciences of the United States of America | 2013
Phenix-Lan Quan; Cadhla Firth; Juliette M. Conte; Simon H. Williams; Carlos Zambrana-Torrelio; Simon J. Anthony; James A. Ellison; Amy T. Gilbert; Ivan V. Kuzmin; Michael Niezgoda; Modupe Osinubi; Sergio Recuenco; Wanda Markotter; Robert F. Breiman; Lems Kalemba; Jean Malekani; Kim A. Lindblade; Melinda K. Rostal; Rafael Ojeda-Flores; Gerardo Suzán; Lora B. Davis; Dianna M. Blau; Albert B. Ogunkoya; Danilo A. Alvarez Castillo; David Moran; Sali Ngam; Dudu Akaibe; Bernard Agwanda; Thomas Briese; Jonathan H. Epstein
6.3 billion (or ~
Veterinary Record | 2007
K. E. Darpel; Carrie Batten; E. Veronesi; Andrew E. Shaw; Simon J. Anthony; K. Bachanek-Bankowska; L. Kgosana; A. Bin-Tarif; Simon Carpenter; U. U. Muller-Doblies; H.-H. Takamatsu; Philip S. Mellor; Peter P. C. Mertens; C.A.L. Oura
1.4 billion for 85% of the total diversity), which if annualized over a 10-year study time frame would represent a small fraction of the cost of many pandemic zoonoses. IMPORTANCE Recent years have seen a dramatic increase in viral discovery efforts. However, most lack rigorous systematic design, which limits our ability to understand viral diversity and its ecological drivers and reduces their value to public health intervention. Here, we present a new framework for the discovery of novel viruses in wildlife and use it to make the first-ever estimate of the number of viruses that exist in a mammalian host. As pathogens continue to emerge from wildlife, this estimate allows us to put preliminary bounds around the potential size of the total zoonotic pool and facilitates a better understanding of where best to allocate resources for the subsequent discovery of global viral diversity. Recent years have seen a dramatic increase in viral discovery efforts. However, most lack rigorous systematic design, which limits our ability to understand viral diversity and its ecological drivers and reduces their value to public health intervention. Here, we present a new framework for the discovery of novel viruses in wildlife and use it to make the first-ever estimate of the number of viruses that exist in a mammalian host. As pathogens continue to emerge from wildlife, this estimate allows us to put preliminary bounds around the potential size of the total zoonotic pool and facilitates a better understanding of where best to allocate resources for the subsequent discovery of global viral diversity.
PLOS ONE | 2011
Terry Fei Fan Ng; Dana Willner; Yan Wei Lim; Robert Schmieder; Betty Chau; Christina Nilsson; Simon J. Anthony; Yijun Ruan; Forest Rohwer; Mya Breitbart
Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.
Journal of General Virology | 2013
Simon J. Anthony; Rafael Ojeda-Flores; O. Rico-Chávez; Isamara Navarrete-Macias; Carlos Zambrana-Torrelio; Melinda K. Rostal; Jonathan H. Epstein; T. Tipps; Eliza Liang; Maria Sanchez-Leon; J. Sotomayor-Bonilla; A. Alonso Aguirre; R. A. Ávila-Flores; Rodrigo A. Medellín; Tracey Goldstein; Gerardo Suzán; Peter Daszak; W. I. Lipkin
Four poll Dorset sheep and four Holstein-Friesian cattle were infected with the northern European strain of bluetongue virus (btv), btv-8, to assess its pathogenicity in uk breeds. The time course of infection was monitored in both species by using real-time reverse transcriptase-pcr (rt-pcr), conventional rt-pcr and serology. Two of the sheep developed severe clinical signs that would have been fatal in the field; the other two were moderately and mildly ill, respectively. The cattle were clinically unaffected, but had high levels of viral rna in their bloodstream. Real-time rt-pcr detected viral rna as early as one day after infection in the cattle and three days after infection in the sheep. Antibodies against btv were detected by six days after infection in the sheep and eight days after infection in the cattle. Postmortem examinations revealed pathology in the cattle that was more severe than suggested by the mild clinical signs, but the pathological and clinical findings in the sheep were more consistent.
Mbio | 2012
Simon J. Anthony; J. A. St. Leger; K. Pugliares; Hon S. Ip; Joseph Chan; Zachary Carpenter; Isamara Navarrete-Macias; Maria Sanchez-Leon; Jeremiah T. Saliki; Janice C. Pedersen; William B. Karesh; Peter Daszak; Raul Rabadan; Teri Rowles; W. I. Lipkin
Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes.
Emerging Infectious Diseases | 2013
Kevin J. Olival; Ariful Islam; Meng Yu; Simon J. Anthony; Jonathan H. Epstein; S. A. Khan; Salah Uddin Khan; Gary Crameri; Lin-Fa Wang; W. Ian Lipkin; Stephen P. Luby; Peter Daszak
Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health.
PLOS ONE | 2012
Kristine M. Smith; Simon J. Anthony; William M. Switzer; Jonathan H. Epstein; Tracie A. Seimon; Hongwei Jia; María Dolores Mínguez Sánchez; Thanh Thao Huynh; G. Gale Galland; Sheryl E. Shapiro; Jonathan M. Sleeman; Denise McAloose; Margot Stuchin; George Amato; Sergios-Orestis Kolokotronis; W. Ian Lipkin; William B. Karesh; Peter Daszak; Nina Marano
ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. IMPORTANCE The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence. The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence.
Veterinary Record | 2008
H. Yadin; Jacob Brenner; V. Bumbrov; Z. Oved; Y. Stram; E. Klement; S. Perl; Simon J. Anthony; Sushila Maan; Carrie Batten; Peter P. C. Mertens
To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia.
Vaccine | 2010
Eva Veronesi; Karin E. Darpel; Chris Hamblin; Simon Carpenter; Haru-Hisa Takamatsu; Simon J. Anthony; Heather Elliott; Peter P. C. Mertens; Philip S. Mellor
The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the worlds largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence.