Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon J. Conn is active.

Publication


Featured researches published by Simon J. Conn.


Cell | 2015

The RNA Binding Protein Quaking Regulates Formation of circRNAs

Simon J. Conn; Katherine A. Pillman; John Toubia; Vanessa Conn; Marika Salmanidis; Caroline A. Phillips; Suraya Roslan; Andreas W. Schreiber; Philip A. Gregory; Gregory J. Goodall

Circular RNAs (circRNAs), formed by non-sequential back-splicing of pre-mRNA transcripts, are a widespread form of non-coding RNA in animal cells. However, it is unclear whether the majority of circRNAs represent splicing by-products without function or are produced in a regulated manner to carry out specific cellular functions. We show that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and find that the production of over one-third of abundant circRNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT. Furthermore, by modulating QKI levels, we show the effect on circRNA abundance is dependent on intronic QKI binding motifs. Critically, the addition of QKI motifs is sufficient to induce de novo circRNA formation from transcripts that are normally linearly spliced. These findings demonstrate circRNAs are both purposefully synthesized and regulated by cell-type specific mechanisms, suggesting they play specific biological roles in EMT.


Nature Biotechnology | 2012

Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene

Rana Munns; Richard A. James; Bo Xu; Asmini Athman; Simon J. Conn; Charlotte Jordans; Caitlin S. Byrt; Ray A. Hare; Stephen D. Tyerman; Mark Tester; Darren Plett; Matthew Gilliham

The ability of wheat to maintain a low sodium concentration ([Na+]) in leaves correlates with improved growth under saline conditions. This trait, termed Na+ exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na+ exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na+] (ref. 5). Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na+-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na+ from the xylem and reduce transport of Na+ to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na+] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.


Oncogene | 2002

Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities

Elaine Stead; Josephine White; Renate Faast; Simon J. Conn; Sherilyn Goldstone; Joy Rathjen; Urvashi Dhingra; Peter D. Rathjen; Duncan Walker; Stephen Dalton

Pluripotent cells of embryonic origin proliferate at unusually rapid rates and have a characteristic cell cycle structure with truncated gap phases. To define the molecular basis for this we have characterized the cell cycle control of murine embryonic stem cells and early primitive ectoderm-like cells. These cells display precocious Cdk2, cyclin A and cyclin E kinase activities that are conspicuously cell cycle independent. Suppression of Cdk2 activity significantly decreased cycling times of pluripotent cells, indicating it to be rate-limiting for rapid cell division, although this had no impact on cell cycle structure and the establishment of extended gap phases. Cdc2-cyclin B was the only Cdk activity that was identified to be cell cycle regulated in pluripotent cells. Cell cycle regulation of cyclin B levels and Y15 regulation of Cdc2 contribute to the temporal changes in Cdc2-cyclin B activity. E2F target genes are constitutively active throughout the cell cycle, reflecting the low activity of pocket proteins such as p107 and pRb and constitutive activity of pRb-kinases. These results show that rapid cell division cycles in primitive cells of embryonic origin are driven by extreme levels of Cdk activity that lack normal cell cycle periodicity.


Annals of Botany | 2010

Comparative physiology of elemental distributions in plants

Simon J. Conn; Matthew Gilliham

BACKGROUND Plants contain relatively few cell types, each contributing a specialized role in shaping plant function. With respect to plant nutrition, different cell types accumulate certain elements in varying amounts within their storage vacuole. The role and mechanisms underlying cell-specific distribution of elements in plants is poorly understood. SCOPE The phenomenon of cell-specific elemental accumulation has been briefly reviewed previously, but recent technological advances with the potential to probe mechanisms underlying elemental compartmentation have warranted an updated evaluation. We have taken this opportunity to catalogue many of the studies, and techniques used for, recording cell-specific compartmentation of particular elements. More importantly, we use three case-study elements (Ca, Cd and Na) to highlight the basis of such phenomena in terms of their physiological implications and underpinning mechanisms; we also link such distributions to the expression of known ion or solute transporters. CONCLUSIONS Element accumulation patterns are clearly defined by expression of key ion or solute transporters. Although the location of element accumulation is fairly robust, alterations in expression of certain solute transporters, through genetic modifications or by growth under stress, result in perturbations to these patterns. However, redundancy or induced pleiotropic expression effects may complicate attempts to characterize the pathways that lead to cell-specific elemental distribution. Accumulation of one element often has consequences on the accumulation of others, which seems to be driven largely to maintain vacuolar and cytoplasmic osmolarity and charge balance, and also serves as a detoxification mechanism. Altered cell-specific transcriptomics can be shown, in part, to explain some of this compensation.


The Plant Cell | 2011

Cell-Specific Vacuolar Calcium Storage Mediated by CAX1 Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in Arabidopsis

Simon J. Conn; Matthew Gilliham; Asmini Athman; Andreas W. Schreiber; Ute Baumann; Isabel Moller; Ninghui Cheng; Matthew A. Stancombe; Kendal D. Hirschi; Alex A. R. Webb; Rachel A. Burton; Brent N. Kaiser; Stephen D. Tyerman; Roger A. Leigh

Mineral elements are often preferentially stored in vacuoles of specific leaf cell types, but the mechanism and physiological role for this phenomenon is poorly understood. We use single-cell analysis to reveal the genetic basis underpinning mesophyll-specific calcium storage in Arabidopsis leaves and a variety of physiological assays to uncover its fundamental importance to plant productivity. The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca2+ transporters, CAX1 (Ca2+/H+-antiporter), ACA4, and ACA11 (Ca2+-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO2 assimilation, and leaf growth rate; increased transcript abundance of other Ca2+ transporter genes; altered expression of cell wall–modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca2+], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca2+] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.


Journal of Experimental Botany | 2008

Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins

Simon J. Conn; Chris Curtin; Annie Bézier; Christopher M. M. Franco; Wei Zhang

The ligandin activity of specific glutathione S-transferases (GSTs) is necessary for the transport of anthocyanins from the cytosol to the plant vacuole. Five GSTs were purified from Vitis vinifera L. cv. Gamay Fréaux cell suspension cultures by glutathione affinity chromatography. These proteins underwent Edman sequencing and mass spectrometry fingerprinting, with the resultant fragments aligned with predicted GSTs within public databases. The corresponding coding sequences were cloned, with heterologous expression in Escherichia coli used to confirm GST activity. Transcriptional profiling of these candidate GST genes and key anthocyanin biosynthetic pathway genes (PAL, CHS, DFR, and UFGT) in cell suspensions and grape berries against anthocyanin accumulation demonstrated strong positive correlation with two sequences, VvGST1 and VvGST4, respectively. The ability of VvGST1 and VvGST4 to transport anthocyanins was confirmed in the heterologous maize bronze-2 complementation model, providing further evidence for their function as anthocyanin transport proteins in grape cells. Furthermore, the differential induction of VvGST1 and VvGST4 in suspension cells and grape berries suggests functional differences between these two proteins. Further investigation of these candidate ligandins may identify a mechanism for manipulating anthocyanin accumulation in planta and in vitro suspension cells.


Plant Journal | 2010

Xylem ionic relations and salinity tolerance in barley

Sergey Shabala; Svetlana Shabala; Tracey Ann Cuin; Jiayin Pang; William J. Percey; Zhong-Hua Chen; Simon J. Conn; Christian Eing; Lars H. Wegner

Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non-invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na(+) loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na(+) concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K(+)/Na(+) ratios and efficiently sequester the accumulated Na(+) in leaves. The former is achieved by more efficient loading of K(+) into the xylem. We argue that the observed increases in xylem K(+) and Na(+) concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K(+)-permeable voltage-sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K(+)/Na(+) ratio in the xylem sap.


Journal of Experimental Botany | 2011

Calcium delivery and storage in plant leaves: exploring the link with water flow

Matthew Gilliham; Maclin Dayod; Bradleigh Hocking; Bo Xu; Simon J. Conn; Brent N. Kaiser; Roger A. Leigh; Stephen D. Tyerman

Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.


Plant Methods | 2013

Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

Simon J. Conn; Bradleigh Hocking; Maclin Dayod; Bo Xu; Asmini Athman; Sam W Henderson; Lucy Aukett; Vanessa Conn; Monique K Shearer; Sigfredo Fuentes; Stephen D. Tyerman; Matthew Gilliham

BackgroundHydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays.ResultsThe drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA.ConclusionsWe present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar growth kinetics to soil-grown plants, but with the advantage of being a versatile platform for a myriad of physiological and molecular biological measurements on all plant tissues at all developmental stages. We present ‘tips and tricks’ for the easy adoption of this hydroponic culture system.


New Phytologist | 2011

Magnesium transporters, MGT2/MRS2‐1 and MGT3/MRS2‐5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles

Simon J. Conn; Vanessa Conn; Stephen D. Tyerman; Brent N. Kaiser; Roger A. Leigh; Matthew Gilliham

• Magnesium accumulates at high concentrations in dicotyledonous leaves but it is not known in which leaf cell types it accumulates, by what mechanism this occurs and the role it plays when stored in the vacuoles of these cell types. • Cell-specific vacuolar elemental profiles from Arabidopsis thaliana (Arabidopsis) leaves were analysed by X-ray microanalysis under standard and serpentine hydroponic growth conditions and correlated with the cell-specific complement of magnesium transporters identified through microarray analysis and quantitative polymerase chain reaction (qPCR). • Mesophyll cells accumulate the highest vacuolar concentration of magnesium in Arabidopsis leaves and are enriched for members of the MGT/MRS2 family of magnesium transporters. Specifically, AtMGT2/AtMRS2-1 and AtMGT3/AtMRS2-5 were shown to be targeted to the tonoplast and corresponding T-DNA insertion lines had perturbed mesophyll-specific vacuolar magnesium accumulation under serpentine conditions. Furthermore, transcript abundance of these genes was correlated with the accumulation of magnesium under serpentine conditions, in a low calcium-accumulating mutant and across 23 Arabidopsis ecotypes varying in their leaf magnesium concentrations. • We implicate magnesium as a key osmoticum required to maintain growth in low calcium concentrations in Arabidopsis. Furthermore, two tonoplast-targeted members of the MGT/MRS2 family are shown to contribute to this mechanism under serpentine conditions.

Collaboration


Dive into the Simon J. Conn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Xu

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge