Brent N. Kaiser
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brent N. Kaiser.
Plant Physiology | 2009
Rebecca K. Vandeleur; Gwenda M Mayo; Megan C. Shelden; Matthew Gilliham; Brent N. Kaiser; Stephen D. Tyerman
We report physiological and anatomical characteristics of water transport across roots grown in soil of two cultivars of grapevine (Vitis vinifera) differing in response to water stress (Grenache, isohydric; Chardonnay, anisohydric). Both cultivars have similar root hydraulic conductances (Lo; normalized to root dry weight) that change diurnally. There is a positive correlation between Lo and transpiration. Under water stress, both cultivars have reduced minimum daily Lo (predawn) attributed to the development of apoplastic barriers. Water-stressed and well-watered Chardonnay had the same diurnal change in amplitude of Lo, while water-stressed Grenache showed a reduction in daily amplitude compared with well-watered plants. Hydraulic conductivity of root cortex cells (Lpcell) doubles in Chardonnay but remains unchanged in Grenache. Of the two most highly expressed plasma membrane intrinsic protein (PIP) aquaporins in roots (VvPIP1;1 and VvPIP2;2), only VvPIP2;2 functions as a water channel in Xenopus laevis oocytes. VvPIP1;1 interacts with VvPIP2;2 to induce 3-fold higher water permeability. These two aquaporins are colocated in the root from in situ hybridization and immunolocalization of VvPIP1 and VvPIP2 subfamily members. They occur in root tip, exodermis, root cortex (detected up to 30 mm), and stele. VvPIP2;2 mRNA does not change diurnally or with water stress, in contrast to VvPIP1;1, in which expression reflects the differences in Lo and Lpcell between cultivars in their responses to water stress and rewatering. VvPIP1;1 may regulate water transport across roots such that transpirational demand is matched by root water transport capacity. This occurs on a diurnal basis and in response to water stress that corresponds to the difference in drought tolerance between the cultivars.
Plant Cell and Environment | 2009
Trevor Garnett; Vanessa Conn; Brent N. Kaiser
In the majority of agricultural growing regions, crop production is highly dependent on the supply of exogenous nitrogen (N) fertilizers. Traditionally, this dependency and the use of N-fertilizers to restore N depleted soils has been rewarded with increased plant health and yields. In recent years, increased competition for non-renewable fossil fuel reserves has directly elevated prices of N-fertilizers and the cost of agricultural production worldwide. Furthermore, N-fertilizer based pollution is becoming a serious issue for many regions where agriculture is highly concentrated. To help minimize the N footprint associated with agricultural production there is significant interest at the plant level to develop technologies which can allow economically viable production while using less applied N. To complement recent reviews examining N utilization efficiency in agricultural plants, this review will explore those strategies operating specifically at the root level, which may directly contribute to improved N use efficiencies in agricultural crops such as cereals, where the majority of N-fertilizers are used and lost to the environment. Root specific phenotypes that will be addressed in the context of improvements to N acquisition and assimilation efficiencies include: root morphology; root to shoot ratios; root vigour, root length density; and root N transport and metabolism.
The Plant Cell | 2011
Simon J. Conn; Matthew Gilliham; Asmini Athman; Andreas W. Schreiber; Ute Baumann; Isabel Moller; Ninghui Cheng; Matthew A. Stancombe; Kendal D. Hirschi; Alex A. R. Webb; Rachel A. Burton; Brent N. Kaiser; Stephen D. Tyerman; Roger A. Leigh
Mineral elements are often preferentially stored in vacuoles of specific leaf cell types, but the mechanism and physiological role for this phenomenon is poorly understood. We use single-cell analysis to reveal the genetic basis underpinning mesophyll-specific calcium storage in Arabidopsis leaves and a variety of physiological assays to uncover its fundamental importance to plant productivity. The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca2+ transporters, CAX1 (Ca2+/H+-antiporter), ACA4, and ACA11 (Ca2+-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO2 assimilation, and leaf growth rate; increased transcript abundance of other Ca2+ transporter genes; altered expression of cell wall–modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca2+], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca2+] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.
Journal of Biological Chemistry | 2002
Sophie Moreau; Rowena Thomson; Brent N. Kaiser; Ben Trevaskis; Mary Lou Guerinot; Michael K. Udvardi; Alain Puppo; David A. Day
The importance of zinc in organisms is clearly established, and mechanisms involved in zinc acquisition by plants have recently received increased interest. In this report, the identification, characterization and location of GmZIP1, the first soybean member of the ZIP family of metal transporters, are described. GmZIP1 was found to possess eight putative transmembrane domains together with a histidine-rich extra-membrane loop. By functional complementation of zrt1zrt2 yeast cells no longer able to take up zinc, GmZIP1 was found to be highly selective for zinc, with an estimated K m value of 13.8 μm. Cadmium was the only other metal tested able to inhibit zinc uptake in yeast. An antibody raised against GmZIP1 specifically localized the protein to the peribacteroid membrane, an endosymbiotic membrane in nodules resulting from the interaction of the plant with its microsymbiont. The specific expression of GmZIP1 in nodules was confirmed by Northern blot, with no expression in roots, stems, or leaves of nodulated soybean plants. Antibodies to GmZIP1 inhibited zinc uptake by symbiosomes, indicating that at least some of the zinc uptake observed in isolated symbiosomes could be attributed to GmZIP1. The orientation of the protein in the membrane and its possible role in the symbiosis are discussed.
Journal of Plant Nutrition and Soil Science | 2001
Anthony D. M. Glass; Dev T. Brito; Brent N. Kaiser; Herbert J. Kronzucker; Anshuman Kumar; Mamaru Okamoto; Suman Rawat; M. Y. Siddiqi; Salim M. Silim; Joseph John Vidmar; Degen Zhuo
Physiological methods, especially the use of isotopes of N, have allowed for the detailed characterizations of the several putative transport systems for nitrate and ammonium in roots of higher plants. In the last decade, the cloning of genes that appear to encode both high- and low-affinity transporters represent major advances, as well as substantiating the inferences based on earlier physiological methods. Nevertheless, the unexpected plethora of genes that have been identified now presents even greater challenges, to resolve their individual functions and to attempt to place these functions in a whole plant/environmental context.
Plant Physiology | 2002
Brent N. Kaiser; Suman Rawat; M. Yaeesh Siddiqi; Josette Masle; Anthony D. M. Glass
NH4 + acquisition by plant roots is thought to involve members of the NH4 +transporter family (AMT) found in plants, yeast, bacteria, and mammals. In Arabidopsis, there are six AMT genes of which AtAMT1;1 demonstrates the highest affinity for NH4 +. Ammonium influx into roots and AtAMT1;1 mRNA expression levels are highly correlated diurnally and when plant nitrogen (N) status is varied. To further investigate the involvement of AtAMT1;1 in high-affinity NH4 + influx, we identified a homozygous T-DNA mutant with disrupted AtAMT1;1 activity. Contrary to expectation, high-affinity 13NH4 +influx in the amt1;1:T-DNAmutant was similar to the wild type when grown with adequate N. Removal of N to increase AtAMT1;1 expression decreased high-affinity 13NH4 +influx in the mutant by 30% compared with wild-type plants, whereas low-affinity 13NH4 + influx (250 μm–10 mm NH4 +) exceeded that of wild-type plants. In these N-deprived plants, mRNA copy numbers of root AtAMT1;3 andAtAMT2;1 mRNA were significantly more increased in the mutant than in wild-type plants. Under most growth conditions, amt1;1:T-DNAplants were indistinguishable from the wild type, however, leaf morphology was altered. However, when grown with NH4 + and sucrose, the mutant grew poorly and died. Our results are the first in planta evidence that AtAMT1;1 is a root NH4 + transporter and that redundancies within the AMT family may allow compensation for the loss of AtAMT1;1.
Nature plants | 2016
Christine H. Foyer; Hon-Ming Lam; Henry T. Nguyen; Kadambot H. M. Siddique; Rajeev K. Varshney; Timothy D. Colmer; Wallace Cowling; Helen Bramley; Trevor A. Mori; Jonathan M. Hodgson; James W. Cooper; Anthony J. Miller; Karl J. Kunert; Juan Vorster; Christopher A. Cullis; Jocelyn A. Ozga; Mark L. Wahlqvist; Yan Liang; Huixia Shou; Kai Shi; Jing-Quan Yu; Nándor Fodor; Brent N. Kaiser; Fuk-Ling Wong; Babu Valliyodan; Michael J. Considine
The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner ‘nutritious seeds for a sustainable future’. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.
Plant Cell and Environment | 2014
Rebecca K. Vandeleur; Wendy Sullivan; Asmini Athman; Charlotte Jordans; Matthew Gilliham; Brent N. Kaiser; Stephen D. Tyerman
We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo .
Journal of Experimental Botany | 2011
Matthew Gilliham; Maclin Dayod; Bradleigh Hocking; Bo Xu; Simon J. Conn; Brent N. Kaiser; Roger A. Leigh; Stephen D. Tyerman
Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.
PLOS ONE | 2010
Darren Plett; John Toubia; Trevor Garnett; Mark Tester; Brent N. Kaiser; Ute Baumann
A large proportion of the nitrate (NO3 −) acquired by plants from soil is actively transported via members of the NRT families of NO3 − transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO3 − transporters and NO3 − transport in grass crop species.