Simon Lucey
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon Lucey.
International Journal of Computer Vision | 2011
Jason M. Saragih; Simon Lucey; Jeffrey F. Cohn
Deformable model fitting has been actively pursued in the computer vision community for over a decade. As a result, numerous approaches have been proposed with varying degrees of success. A class of approaches that has shown substantial promise is one that makes independent predictions regarding locations of the model’s landmarks, which are combined by enforcing a prior over their joint motion. A common theme in innovations to this approach is the replacement of the distribution of probable landmark locations, obtained from each local detector, with simpler parametric forms. In this work, a principled optimization strategy is proposed where nonparametric representations of these likelihoods are maximized within a hierarchy of smoothed estimates. The resulting update equations are reminiscent of mean-shift over the landmarks but with regularization imposed through a global prior over their joint motion. Extensions to handle partial occlusions and reduce computational complexity are also presented. Through numerical experiments, this approach is shown to outperform some common existing methods on the task of generic face fitting.
international conference on computer vision | 2009
Jason M. Saragih; Simon Lucey; Jeffrey F. Cohn
Deformable model fitting has been actively pursued in the computer vision community for over a decade. As a result, numerous approaches have been proposed with varying degrees of success. A class of approaches that has shown substantial promise is one that makes independent predictions regarding locations of the models landmarks, which are combined by enforcing a prior over their joint motion. A common theme in innovations to this approach is the replacement of the distribution of probable landmark locations, obtained from each local detector, with simpler parametric forms. This simplification substitutes the true objective with a smoothed version of itself, reducing sensitivity to local minima and outlying detections. In this work, a principled optimization strategy is proposed where a nonparametric representation of the landmark distributions is maximized within a hierarchy of smoothed estimates. The resulting update equations are reminiscent of mean-shift but with a subspace constraint placed on the shapes variability. This approach is shown to outperform other existing methods on the task of generic face fitting.
Image and Vision Computing | 2009
Ahmed Bilal Ashraf; Simon Lucey; Jeffrey F. Cohn; Tsuhan Chen; Zara Ambadar; Kenneth M. Prkachin; Patricia Solomon
Pain is typically assessed by patient self-report. Self-reported pain, however, is difficult to interpret and may be impaired or in some circumstances (i.e., young children and the severely ill) not even possible. To circumvent these problems behavioral scientists have identified reliable and valid facial indicators of pain. Hitherto, these methods have required manual measurement by highly skilled human observers. In this paper we explore an approach for automatically recognizing acute pain without the need for human observers. Specifically, our study was restricted to automatically detecting pain in adult patients with rotator cuff injuries. The system employed video input of the patients as they moved their affected and unaffected shoulder. Two types of ground truth were considered. Sequence-level ground truth consisted of Likert-type ratings by skilled observers. Frame-level ground truth was calculated from presence/absence and intensity of facial actions previously associated with pain. Active appearance models (AAM) were used to decouple shape and appearance in the digitized face images. Support vector machines (SVM) were compared for several representations from the AAM and of ground truth of varying granularity. We explored two questions pertinent to the construction, design and development of automatic pain detection systems. First, at what level (i.e., sequence- or frame-level) should datasets be labeled in order to obtain satisfactory automatic pain detection performance? Second, how important is it, at both levels of labeling, that we non-rigidly register the face?
IEEE MultiMedia | 2012
Abhinav Dhall; Roland Goecke; Simon Lucey; Tamas Gedeon
Two large facial-expression databases depicting challenging real-world conditions were constructed using a semi-automatic approach via a recommender system based on subtitles.Two large facial-expression databases depicting challenging real-world conditions were constructed using a semi-automatic approach via a recommender system based on subtitles.
Archive | 2007
Simon Lucey; Ahmed Bilal Ashraf; Jeffrey F. Cohn
The Facial Action Coding System (FACS) [Ekman et al., 2002] is the leading method for measuring facial movement in behavioral science. FACS has been successfully applied, but not limited to, identifying the differences between simulated and genuine pain, differences betweenwhen people are telling the truth versus lying, and differences between suicidal and non-suicidal patients [Ekman and Rosenberg, 2005]. Successfully recognizing facial actions is recognized as one of the “major” hurdles to overcome, for successful automated expression recognition. How one should represent the face for effective action unit recognition is the main topic of interest in this chapter. This interest is motivated by the plethora of work in existence in other areas of face analysis, such as face recognition [Zhao et al., 2003], that demonstrate the benefit of representation when performing recognition tasks. It is well understood in the field of statistical pattern recognition [Duda et al., 2001] given a fixed classifier and training set that how one represents a pattern can greatly effect recognition performance. The face can be represented in a myriad of ways. Much work in facial action recognition has centered solely on the appearance (i.e., pixel values) of the face given quite a basic alignment (e.g., eyes and nose). In our work we investigate the employment of the Active Appearance Model (AAM) framework [Cootes et al., 2001, Matthews and Baker, 2004] in order to derive effective representations for facial action recognition. Some of the representations we will be employing can be seen in Figure 1. Experiments in this chapter are run across two action unit databases. The CohnKanade FACS-Coded Facial Expression Database [Kanade et al., 2000] is employed to investigate the effect of face representation on posed facial action unit recognition. Posed facial actions are those that have been elicited by asking subjects to deliberately make specific facial actions or expressions. Facial actions are typically recorded under controlled circumstances that include full-face frontal view, good lighting, constrained head movement and selectivity in terms of the type and magnitude of facial actions. Almost all work in automatic facial expression analysis has used posed image data and the Cohn-Kanade database may be the database most widely used [Tian et al., 2005]. The RU-FACS Spontaneous Expression Database is employed to investigate how these same representations affect spontaneous facial action unit recognition. Spontaneous facial actions are representative of “real-world” facial
computer vision and pattern recognition | 2008
Yang Wang; Simon Lucey; Jeffrey F. Cohn
Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/ tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive.
international conference on multimodal interfaces | 2007
Ahmed Bilal Ashraf; Simon Lucey; Jeffrey F. Cohn; Tsuhan Chen; Zara Ambadar; Kenneth M. Prkachin; Patty Solomon; Barry-John Theobald
Pain is typically assessed by patient self-report. Self-reported pain, however, is difficult to interpret and may be impaired or not even possible, as in young children or the severely ill. Behavioral scientists have identified reliable and valid facial indicators of pain. Until now they required manual measurement by highly skilled observers. We developed an approach that automatically recognizes acute pain. Adult patients with rotator cuff injury were video-recorded while a physiotherapist manipulated their affected and unaffected shoulder. Skilled observers rated pain expression from the video on a 5-point Likert-type scale. From these ratings, sequences were categorized as no-pain (rating of 0), pain (rating of 3, 4, or 5), and indeterminate (rating of 1 or 2). We explored machine learning approaches for pain-no pain classification. Active Appearance Models (AAM) were used to decouple shape and appearance parameters from the digitized face images. Support vector machines (SVM) were used with several representations from the AAM. Using a leave-one-out procedure, we achieved an equal error rate of 19% (hit rate = 81%) using canonical appearance and shape features. These findings suggest the feasibility of automatic pain detection from video.
international conference on computer vision | 2011
Abhinav Dhall; Roland Goecke; Simon Lucey; Tamas Gedeon
Quality data recorded in varied realistic environments is vital for effective human face related research. Currently available datasets for human facial expression analysis have been generated in highly controlled lab environments. We present a new static facial expression database Static Facial Expressions in the Wild (SFEW) extracted from a temporal facial expressions database Acted Facial Expressions in the Wild (AFEW) [9], which we have extracted from movies. In the past, many robust methods have been reported in the literature. However, these methods have been experimented on different databases or using different protocols within the same databases. The lack of a standard protocol makes it difficult to compare systems and acts as a hindrance in the progress of the field. Therefore, we propose a person independent training and testing protocol for expression recognition as part of the BEFIT workshop. Further, we compare our dataset with the JAFFE and Multi-PIE datasets and provide baseline results.
systems man and cybernetics | 2011
Patrick Lucey; Jeffrey F. Cohn; Iain A. Matthews; Simon Lucey; Sridha Sridharan; Jessica M. Howlett; Kenneth M. Prkachin
In a clinical setting, pain is reported either through patient self-report or via an observer. Such measures are problematic as they are: 1) subjective, and 2) give no specific timing information. Coding pain as a series of facial action units (AUs) can avoid these issues as it can be used to gain an objective measure of pain on a frame-by-frame basis. Using video data from patients with shoulder injuries, in this paper, we describe an active appearance model (AAM)-based system that can automatically detect the frames in video in which a patient is in pain. This pain data set highlights the many challenges associated with spontaneous emotion detection, particularly that of expression and head movement due to the patients reaction to pain. In this paper, we show that the AAM can deal with these movements and can achieve significant improvements in both the AU and pain detection performance compared to the current-state-of-the-art approaches which utilize similarity-normalized appearance features only.
computer vision and pattern recognition | 2008
Ahmed Bilal Ashraf; Simon Lucey; Tsuhan Chen
Variation due to viewpoint is one of the key challenges that stand in the way of a complete solution to the face recognition problem. It is easy to note that local regions of the face change differently in appearance as the viewpoint varies. Recently, patch-based approaches, such as those of Kanade and Yamada, have taken advantage of this effect resulting in improved viewpoint invariant face recognition. In this paper we propose a data-driven extension to their approach, in which we not only model how a face patch varies in appearance, but also how it deforms spatially as the viewpoint varies. We propose a novel alignment strategy which we refer to as ldquostack flowrdquo that discovers viewpoint induced spatial deformities undergone by a face at the patch level. One can then view the spatial deformation of a patch as the correspondence of that patch between two viewpoints. We present improved identification and verification results to demonstrate the utility of our technique.
Collaboration
Dive into the Simon Lucey's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs