Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon O. Clark is active.

Publication


Featured researches published by Simon O. Clark.


Immunology | 2004

Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs

Ann Williams; Rajko Reljic; Irene Naylor; Simon O. Clark; Gustavo Falero-Diaz; Mahavir Singh; Stephen Challacombe; Philip Marsh; Juraj Ivanyi

We report on a new approach toward protection against tuberculosis, based on passive inoculation with immunoglobulin A (IgA) antibodies. In a mouse model of tuberculous lung infection, intranasal inoculations of mice with an IgA monoclonal antibody (mAb) against the α‐crystallin antigen of Mycobacterium tuberculosis reduced up to 10‐fold the lung bacterial counts at nine days after either aerosol‐ or intranasal challenge. This effect involved synergism between mAb inoculations shortly before and 3 days after infection. Monomeric IgA reduced the colony‐forming unit counts to the same extent as the polymeric IgA, suggesting antibody targeting to Fcα, rather than poly‐immunoglobulin receptors on infected lung macrophages. The protective effect was of short duration, presumably due to the rapid degradation of the intranasally applied IgA. Our results provide evidence of an alternative approach which could be further developed toward immunoprophylaxis against tuberculosis in immunocompromised subjects.


Vaccine | 2013

Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials

Ainhoa Arbués; Juan Ignacio Aguiló; Jesús Gonzalo-Asensio; Dessislava Marinova; Santiago Uranga; Eugenia Puentes; Conchita Fernandez; Alberto Parra; P. J. Cardona; C. Vilaplana; Vicente Ausina; Ann Williams; Simon O. Clark; Wladimir Malaga; Christophe Guilhot; Brigitte Gicquel; Carlos Martín

The development of a new tuberculosis vaccine is an urgent need due to the failure of the current vaccine, BCG, to protect against the respiratory form of the disease. MTBVAC is an attenuated Mycobacterium tuberculosis vaccine candidate genetically engineered to fulfil the Geneva consensus requirements to enter human clinical trials. We selected a M. tuberculosis clinical isolate to generate two independent deletions without antibiotic-resistance markers in the genes phoP, coding for a transcription factor key for the regulation of M. tuberculosis virulence, and fadD26, essential for the synthesis of the complex lipids phthiocerol dimycocerosates (DIM), one of the major mycobacterial virulence factors. The resultant strain MTBVAC exhibits safety and biodistribution profiles similar to BCG and confers superior protection in preclinical studies. These features have enabled MTBVAC to be the first live attenuated M. tuberculosis vaccine to enter clinical evaluation.


Clinical and Vaccine Immunology | 2010

Establishment of an Aerosol Challenge Model of Tuberculosis in Rhesus Macaques and an Evaluation of Endpoints for Vaccine Testing

Sally Sharpe; Helen McShane; Mike Dennis; Randall J. Basaraba; Fergus V. Gleeson; Graham Hall; A. McIntyre; K. Gooch; Simon O. Clark; Natalie E. R. Beveridge; E. Nuth; Andrew White; Alice Marriott; S. Dowall; Adrian V. S. Hill; Andrew R. Williams; Philip Marsh

ABSTRACT The establishment of an aerosol challenge model in nonhuman primates (NHPs) for the testing of vaccines against Mycobacterium tuberculosis would assist the global effort to optimize novel vaccination strategies. The endpoints used in preclinical challenge studies to identify measures of disease burden need to be accurate and sensitive enough to distinguish subtle differences and benefits afforded by different tuberculosis (TB) vaccine regimens when group sizes are inevitably small. This study sought to assess clinical and nonclinical endpoints as potentially sensitive measures of disease burden in a challenge study with rhesus macaques by using a new protocol of aerosol administration of M. tuberculosis. Immunological and clinical readouts were assessed for utility in vaccine evaluation studies. This is the first example of TB vaccine evaluation with rhesus macaques where long-term survival was one of the primary endpoints. However, we found that in NHP vaccine efficacy studies with maximum group sizes of six animals, survival did not provide a valuable endpoint. Two approaches used in human clinical trials for the evaluation of the gamma interferon (IFN-γ) response to vaccination (enzyme-linked immunospot [ELISpot] assay and enzyme-linked immunosorbent assay [ELISA]) were included in this study. The IFN-γ profiles induced following vaccination were found not to correlate with protection, nor did the level of purified protein derivative (PPD)-specific proliferation. The only readout to reliably distinguish vaccinated and unvaccinated NHPs was the determination of lung lesion burden using magnetic resonance (MR) imaging combined with stereology at the end of the study. Therefore, the currently proposed key markers were not shown to correlate with protection, and only imaging offered a potentially reliable correlate.


Infection and Immunity | 2005

Boosting with Poxviruses Enhances Mycobacterium bovis BCG Efficacy against Tuberculosis in Guinea Pigs

Ann Williams; Nilu Goonetilleke; Helen McShane; Simon O. Clark; Graham J. Hatch; Sarah C. Gilbert; Adrian V. S. Hill

ABSTRACT Tuberculosis is rising in the developing world due to poor health care, human immunodeficiency virus type 1 infection, and the low protective efficacy of the Mycobacterium bovis BCG vaccine. A new vaccination strategy that could protect adults in the developing world from tuberculosis could have a huge impact on public health. We show that BCG boosted by poxviruses expressing antigen 85A induced unprecedented 100% protection of guinea pigs from high-dose aerosol challenge with Mycobacterium tuberculosis, suggesting a strategy for enhancing and prolonging the efficacy of BCG.


The Journal of Infectious Diseases | 2004

Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens

Prescille Brodin; Laleh Majlessi; Roland Brosch; Debbie A. Smith; Gregory J. Bancroft; Simon O. Clark; Ann Williams; Claude Leclerc; Stewart T. Cole

Mycobacterium microti, the vole bacillus, which was used as a live vaccine against tuberculosis until the 1970s, confers the same protection in humans as does Mycobacterium bovis bacille Calmette-Guerin (BCG). However, because the efficacy of the BCG vaccine varies considerably, we have tried to develop a better vaccine by reintroducing into M. microti the complete region of difference 1 (RD1), which is required for secretion of the potent T cell antigens early secreted antigen target (ESAT)-6 and culture filtrate protein (CFP)-10. The resultant recombinant strain, M. microti OV254::RD1-2F9, induced specific ESAT-6 and CFP-10 immune responses in mice with CD8(+) T lymphocytes that had strong expression of the CD44(hi) activation marker. This vaccine also displayed better efficacy against disseminated disease in the mouse and the guinea pig models of tuberculosis than was seen in animals vaccinated with M. microti alone or with BCG. The M. microti OV254::RD1-2F9 vaccine was less virulent and persistent in mice and than was BCG::RD1-2F9 may represent a safer alternative to BCG::RD1-2F9.


American Journal of Respiratory and Critical Care Medicine | 2012

Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases.

Naomi F. Walker; Simon O. Clark; Tolu Oni; Nuria Andreu; Liku Tezera; Shivani Singh; Luisa Saraiva; Bernadette Pedersen; Dominic L.F. Kelly; Julia A. Tree; Jeanine D'Armiento; Graeme Meintjes; Francesco Mauri; Ann Williams; Robert J. Wilkinson; Jon S. Friedland; Paul T. Elkington

RATIONALE Tuberculosis kills more than 1.5 million people per year, and standard treatment has remained unchanged for more than 30 years. Tuberculosis (TB) drives matrix metalloproteinase (MMP) activity to cause immunopathology. In advanced HIV infection, tissue destruction is reduced, but underlying mechanisms are poorly defined and no current antituberculous therapy reduces host tissue damage. OBJECTIVES To investigate MMP activity in patients with TB with and without HIV coinfection and to determine the potential of doxycycline to inhibit MMPs and decrease pathology. METHODS Concentrations of MMPs and cytokines were analyzed by Luminex array in a prospectively recruited cohort of patients. Modulation of MMP secretion and Mycobacterium tuberculosis growth by doxycycline was studied in primary human cells and TB-infected guinea pigs. MEASUREMENTS AND MAIN RESULTS HIV coinfection decreased MMP concentrations in induced sputum of patients with TB. MMPs correlated with clinical markers of tissue damage, further implicating dysregulated protease activity in TB-driven pathology. In contrast, cytokine concentrations were no different. Doxycycline, a licensed MMP inhibitor, suppressed TB-dependent MMP-1 and -9 secretion from primary human macrophages and epithelial cells by inhibiting promoter activation. In the guinea pig model, doxycycline reduced lung TB colony forming units after 8 weeks in a dose-dependent manner compared with untreated animals, and in vitro doxycycline inhibited mycobacterial proliferation. CONCLUSIONS HIV coinfection in patients with TB reduces concentrations of immunopathogenic MMPs. Doxycycline decreases MMP activity in a cellular model and suppresses mycobacterial growth in vitro and in guinea pigs. Adjunctive doxycycline therapy may reduce morbidity and mortality in TB.


Tuberculosis | 2009

Determination of lesion volume by MRI and stereology in a macaque model of tuberculosis

Sally Sharpe; E. Eschelbach; Randall J. Basaraba; Fergus V. Gleeson; Graham A. Hall; A. McIntyre; Ann Williams; S.L. Kraft; Simon O. Clark; K. Gooch; Graham J. Hatch; Ian M. Orme; Philip Marsh; Mike Dennis

Sensitive and reproducible methods are needed to measure the impact on the host following experimental challenge with Mycobacterium tuberculosis, in order to determine the degree of protection conferred by new vaccines. Here we compare how well different clinical and post-mortem measures of disease burden predict the response by the host to increasing doses of M. tuberculosis in rhesus and cynomolgus macaques. The total lung and lesion volume was quantified from magnetic resonance imaging (MRI) digital stacks obtained from lungs of M. tuberculosis infected animals that were formalin fixed and scanned ex-vivo. The total lung lesion volume relative to the fixed whole lung volume was superior at indicating disease burden when compared to thoracic radiography, pathology scores, changes in body weight and temperature, as well as erythrocyte haemoglobin concentrations and sedimentation rate. The total lesion volume accurately reflected differences in challenge doses of M. tuberculosis that ranged from 30 to 500 CFU delivered by aerosol. The determination of total lesion volume from MR images demonstrated a species-dependent difference between rhesus and cynomolgus macaques in susceptibility to M. tuberculosis infection. MR stereology provides an accurate, quantifiable and relatively simple assessment, which can be easily standardized between laboratories and should form an essential component of the clinical assessment of disease progression, or vaccine efficacy.


Clinical and Experimental Immunology | 2006

Intranasal IFNγ extends passive IgA antibody protection of mice against Mycobacterium tuberculosis lung infection

Rajko Reljic; Simon O. Clark; Alison Williams; Gustavo Falero-Diaz; Mahavir Singh; Stephen Challacombe; Philip Marsh; Juraj Ivanyi

Intranasal inoculation of mice with monoclonal IgA against the α‐crystallin (acr1) antigen can diminish the tuberculous infection in the lungs. As this effect has been observed only over a short‐term, we investigated if it could be extended by inoculation of IFNγ 3 days before infection, and further coinoculations with IgA, at 2 h before and 2 and 7 days after aerosol infection with Mycobacterium tuberculosis H37Rv. This treatment reduced the lung infection at 4 weeks more than either IgA or IFNγ alone (i.e. 17‐fold, from 4·2 × 107 to 2·5 × 106 CFU, P = 0·006), accompanied also by lower granulomatous infiltration of the lungs. IFNγ added prior to infection of mouse peritoneal macrophages with IgA‐opsonized bacilli resulted in a synergistic increase of nitric oxide and TNFα production and a 2–3 fold decrease in bacterial counts. Our improved results suggest, that combined treatment with IFNγ and IgA could be developed towards prophylactic treatment of AIDS patients, or as an adjunct to chemotherapy.


Vaccine | 2009

Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85B-ESAT-6 does not correlate with circulating IFN-γ producing T-cells

Edgar Badell; Fabienne Nicolle; Simon O. Clark; Laleh Majlessi; Frédéric Boudou; Angelo Martino; Luiz Roberto Castello-Branco; Claude Leclerc; David Lewis; Philip Marsh; Brigitte Gicquel; Nathalie Winter

The potent IFN-gamma inducing fusion antigen Ag85B-ESAT-6 (85B6) is a lead subunit candidate to improve current vaccination against Mycobacterium tuberculosis (Mtb). The recombinant M. bovis BCG strain Myc3504 was constructed to secrete 85B6. It was based on commercial BCG strain Moreau Rio de Janeiro (BCG(MoWT)) which remains available for human oral administration. Myc 3504 induced higher levels of 85B6-specific IFN-gamma circulating T-cells as compared to BCG(MoWT). A novel needle-free mucosal immunization regimen combining oral prime with Myc3504 or BCG(MoWT) with intranasal boost with LTK-63-adjuvanted 85B6 was compared to subcutaneous prime-boost immunization. Strikingly whereas parenteral immunization induced sustained levels of 85B6-specific IFN-gamma secretion by circulating T-cells, mucosal regimens induced barely detectable IFN-gamma. Despite this, mice and guinea pigs immunized with the mucosal regimens were as efficiently protected against aerosol Mtb challenge as parenterally immunized animals. After Mtb challenge, anti-ESAT-6 IFN-gamma responses sharply increased in non-vaccinated mice as a hallmark of infection. Parenterally immunized mice that controlled Mtb infection, displayed anti-ESAT-6 IFN-gamma responses as high as non-immunized infected mice, compromising the possible use of ESAT-6 as a diagnostic tool. Interestingly, in mucosally immunized mice that were equally protected, post-challenge ESAT-6-specific IFN-gamma T-cell response remained low.


Vaccine | 2015

Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system

Daria Bottai; Wafa Frigui; Simon O. Clark; Emma Rayner; Andrea Zelmer; Nuria Andreu; Marien I. de Jonge; Gregory J. Bancroft; Ann Williams; Priscille Brodin; Roland Brosch

BACKGROUND Mycobacterium bovis BCG is presently the only available anti-tuberculosis vaccine used, worldwide. While BCG protects against miliary tuberculosis (TB) and tuberculoid meningitis in children, it often fails to protect against adult pulmonary TB. It is thus imperative that new improved anti-TB vaccines are developed. The integration of the ESX-1 secretion system, absent from BCG due to the deletion of region of difference 1 (RD1), into the genome of BCG has been shown to confer to BCG::ESX-1 enhanced protection against TB as compared to BCG. METHODS In the present study, to counterbalance the increase in virulence resulting from the integration of the RD1 region into BCG, we have constructed and evaluated several BCG::ESX-1 variants that carry selected amino-acid changes in the ESX-1-secreted antigen ESAT-6. In order to find the candidate that combines low virulence with high protective efficacy, these novel recombinant BCG::ESX-1 strains were tested for their virulence properties and their protective efficacy against Mycobacterium tuberculosis in two different animal models (mouse and guinea-pig). RESULTS Among several candidates tested, the BCG::ESAT-L28A/L29S strain, carrying modifications at residues Leu(28)-Leu(29) of the ESAT molecule, showed strong attenuation in mice and high protective efficiency both in mouse and guinea-pig vaccination-infection models. CONCLUSION This strain thus represents a promising candidate that merits further investigations and development. Our research also provides the proof of concept that selected ESX-1-complemented BCG strains may show low virulence and increased protective potential over parental strains.

Collaboration


Dive into the Simon O. Clark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge