Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann Williams is active.

Publication


Featured researches published by Ann Williams.


Nature Medicine | 2003

Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis

Alexander S. Pym; Priscille Brodin; Laleh Majlessi; Roland Brosch; Caroline Demangel; Ann Williams; Karen E. Griffiths; Gilles Marchal; Claude Leclerc; Stewart T. Cole

The live tuberculosis vaccines Mycobacterium bovis BCG (bacille Calmette-Guérin) and Mycobacterium microti both lack the potent, secreted T-cell antigens ESAT-6 (6-kDa early secretory antigenic target) and CFP-10 (10-kDa culture filtrate protein). This is a result of independent deletions in the region of deletion-1 (RD1) locus, which is intact in virulent members of the Mycobacterium tuberculosis complex. To increase their immunogenicity and protective capacity, we complemented both vaccines with different constructs containing the esxA and esxB genes, which encode ESAT-6 and CFP-10 respectively, as well as a variable number of flanking genes. Only reintroduction of the complete locus, comprising at least 11 genes, led to full secretion of the antigens and resulted in specific ESAT-6–dependent immune responses; this suggests that the flanking genes encode a secretory apparatus. Mice and guinea pigs vaccinated with the recombinant strain BCG::RD1-2F9 were better protected against challenge with M. tuberculosis, showing less severe pathology and reduced dissemination of the pathogen, as compared with control animals immunized with BCG alone.


Infection and Immunity | 2004

Protective Effect of a Tuberculosis Subunit Vaccine Based on a Fusion of Antigen 85B and ESAT-6 in the Aerosol Guinea Pig Model

Anja Olsen; Ann Williams; Limei Meng Okkels; Graham J. Hatch; Peter Andersen

ABSTRACT A fusion protein of antigen 85B (Ag85B) and ESAT-6 administered in cationic lipid vesicles conferred a highly significant level of protection against Mycobacterium tuberculosis in the guinea pig aerosol model of infection. The protection was manifested as delayed clinical illness and prolonged survival. Neither Ag85B nor ESAT-6 (independently or as a cocktail) induced significant protection in this model.


Immunology | 2004

Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs

Ann Williams; Rajko Reljic; Irene Naylor; Simon O. Clark; Gustavo Falero-Diaz; Mahavir Singh; Stephen Challacombe; Philip Marsh; Juraj Ivanyi

We report on a new approach toward protection against tuberculosis, based on passive inoculation with immunoglobulin A (IgA) antibodies. In a mouse model of tuberculous lung infection, intranasal inoculations of mice with an IgA monoclonal antibody (mAb) against the α‐crystallin antigen of Mycobacterium tuberculosis reduced up to 10‐fold the lung bacterial counts at nine days after either aerosol‐ or intranasal challenge. This effect involved synergism between mAb inoculations shortly before and 3 days after infection. Monomeric IgA reduced the colony‐forming unit counts to the same extent as the polymeric IgA, suggesting antibody targeting to Fcα, rather than poly‐immunoglobulin receptors on infected lung macrophages. The protective effect was of short duration, presumably due to the rapid degradation of the intranasally applied IgA. Our results provide evidence of an alternative approach which could be further developed toward immunoprophylaxis against tuberculosis in immunocompromised subjects.


Vaccine | 2013

Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials

Ainhoa Arbués; Juan Ignacio Aguiló; Jesús Gonzalo-Asensio; Dessislava Marinova; Santiago Uranga; Eugenia Puentes; Conchita Fernandez; Alberto Parra; P. J. Cardona; C. Vilaplana; Vicente Ausina; Ann Williams; Simon O. Clark; Wladimir Malaga; Christophe Guilhot; Brigitte Gicquel; Carlos Martín

The development of a new tuberculosis vaccine is an urgent need due to the failure of the current vaccine, BCG, to protect against the respiratory form of the disease. MTBVAC is an attenuated Mycobacterium tuberculosis vaccine candidate genetically engineered to fulfil the Geneva consensus requirements to enter human clinical trials. We selected a M. tuberculosis clinical isolate to generate two independent deletions without antibiotic-resistance markers in the genes phoP, coding for a transcription factor key for the regulation of M. tuberculosis virulence, and fadD26, essential for the synthesis of the complex lipids phthiocerol dimycocerosates (DIM), one of the major mycobacterial virulence factors. The resultant strain MTBVAC exhibits safety and biodistribution profiles similar to BCG and confers superior protection in preclinical studies. These features have enabled MTBVAC to be the first live attenuated M. tuberculosis vaccine to enter clinical evaluation.


Infection and Immunity | 2005

Boosting with Poxviruses Enhances Mycobacterium bovis BCG Efficacy against Tuberculosis in Guinea Pigs

Ann Williams; Nilu Goonetilleke; Helen McShane; Simon O. Clark; Graham J. Hatch; Sarah C. Gilbert; Adrian V. S. Hill

ABSTRACT Tuberculosis is rising in the developing world due to poor health care, human immunodeficiency virus type 1 infection, and the low protective efficacy of the Mycobacterium bovis BCG vaccine. A new vaccination strategy that could protect adults in the developing world from tuberculosis could have a huge impact on public health. We show that BCG boosted by poxviruses expressing antigen 85A induced unprecedented 100% protection of guinea pigs from high-dose aerosol challenge with Mycobacterium tuberculosis, suggesting a strategy for enhancing and prolonging the efficacy of BCG.


Journal of Immunology | 2003

Characterization of Lung γδ T Cells Following Intranasal Infection with Mycobacterium bovis Bacillus Calmette-Guérin

Francesco Dieli; Juraj Ivanyi; Philip Marsh; Ann Williams; Irene Naylor; Guido Sireci; Nadia Caccamo; Caterina Di Sano; Alfredo Salerno

The lungs are considered to have an impaired capacity to contain infection by pathogenic mycobacteria, even in the presence of effective systemic immunity. In an attempt to understand the underlying cellular mechanisms, we characterized the γδ T cell population following intranasal infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG). The peak of γδ T cell expansion at 7 days postinfection preceded the 30 day peak of αβ T cell expansion and bacterial count. The expanded population of γδ T cells in the lungs of BCG-infected mice represents an expansion of the resident Vγ2 T cell subset as well as an influx of Vγ1 and of four different Vδ gene-bearing T cell subsets. The γδ T cells in the lungs of BCG-infected mice secreted IFN-γ following in vitro stimulation with ionomycin and PMA and were cytotoxic against BCG-infected peritoneal macrophages as well as against the uninfected J774 macrophage cell line. The cytotoxicity was selectively blocked by anti-γδ TCR mAb and strontium ions, suggesting a granule-exocytosis killing pathway. Depletion of γδ T cells by injection of specific mAb had no effect on the subsequent developing CD4 T cell response in the lungs of BCG-infected mice, but significantly reduced cytotoxic activity and IFN-γ production by lung CD8 T cells. Thus, γδ T cells in the lungs might help to control mycobacterial infection in the period between innate and classical adaptive immunity and may also play an important regulatory role in the subsequent onset of αβ T lymphocytes.


The Journal of Infectious Diseases | 2004

Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens

Prescille Brodin; Laleh Majlessi; Roland Brosch; Debbie A. Smith; Gregory J. Bancroft; Simon O. Clark; Ann Williams; Claude Leclerc; Stewart T. Cole

Mycobacterium microti, the vole bacillus, which was used as a live vaccine against tuberculosis until the 1970s, confers the same protection in humans as does Mycobacterium bovis bacille Calmette-Guerin (BCG). However, because the efficacy of the BCG vaccine varies considerably, we have tried to develop a better vaccine by reintroducing into M. microti the complete region of difference 1 (RD1), which is required for secretion of the potent T cell antigens early secreted antigen target (ESAT)-6 and culture filtrate protein (CFP)-10. The resultant recombinant strain, M. microti OV254::RD1-2F9, induced specific ESAT-6 and CFP-10 immune responses in mice with CD8(+) T lymphocytes that had strong expression of the CD44(hi) activation marker. This vaccine also displayed better efficacy against disseminated disease in the mouse and the guinea pig models of tuberculosis than was seen in animals vaccinated with M. microti alone or with BCG. The M. microti OV254::RD1-2F9 vaccine was less virulent and persistent in mice and than was BCG::RD1-2F9 may represent a safer alternative to BCG::RD1-2F9.


Vaccine | 2003

Mycobacterium tuberculosis arabinomannan–protein conjugates protect against tuberculosis

Beston Hamasur; Melles Haile; Andrzej Pawlowski; Ulf Schröder; Ann Williams; Graham J. Hatch; Graham Hall; Philip Marsh; Gunilla Källenius; Stefan B. Svenson

Lipoarabinomannan (LAM) is a major structural surface component of mycobacteria. Arabinomannan (AM) oligosaccharides derived from LAM of Mycobacterium tuberculosis H37Rv were isolated and covalently conjugated to tetanus toxoid (TT) or to short-term culture filtrate proteins (antigen 85B (Ag85B) or a 75kDa protein) from M. tuberculosis strain Harlingen. The different AM oligosaccharide (AMOs)-protein conjugate vaccine candidates proved to be highly immunogenic, inducing boosterable IgG responses against the AMOs portion of the conjugates in rabbits and guinea-pigs. Proliferation of T-cells from C57BL/6 mice immunized with the conjugates was seen upon in vitro stimulation with PPD. In C57BL/6 mice subcutaneous immunization with the AMOs-antigen 85B conjugate in alum provided significant protection compared to sham (alum only) immunized mice (P < 0.021) as estimated by long term survival against intravenous challenge with 10(5) M. tuberculosis H37Rv. Subcutaneous immunization followed by nasal boost with an AMOs-TT conjugate in Eurocine L3 adjuvant provided high (P < 0.025) protection as determined by long term survival after intranasal challenge with 10(5) virulent M. tuberculosis strain Harlingen. This level of protection was comparable to that obtained with the conventional live attenuated BCG vaccine. In guinea-pigs, immunization with AMOs-Ag85B in Eurocine L3 adjuvant followed by aerogenic challenge with M. tuberculosis H37Rv resulted in increased survival and reduced pathology in lungs and spleens relative to non-immunized animals.


Tuberculosis | 2014

A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data

Helen McShane; Ann Williams

Summary There is an urgent need for an improved TB vaccine. Vaccine development is hindered by the lack of immune correlates and uncertain predictive value of preclinical animal models. As data become available from human efficacy trials, there is an opportunity to evaluate the predictive value of the criteria used to select candidate vaccines. Here we review the efficacy in animal models of the MVA85A candidate vaccine in light of recent human efficacy data and propose refinements to the preclinical models with the aim of increasing their predictive value for human efficacy.


American Journal of Respiratory and Critical Care Medicine | 2012

Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases.

Naomi F. Walker; Simon O. Clark; Tolu Oni; Nuria Andreu; Liku Tezera; Shivani Singh; Luisa Saraiva; Bernadette Pedersen; Dominic L.F. Kelly; Julia A. Tree; Jeanine D'Armiento; Graeme Meintjes; Francesco Mauri; Ann Williams; Robert J. Wilkinson; Jon S. Friedland; Paul T. Elkington

RATIONALE Tuberculosis kills more than 1.5 million people per year, and standard treatment has remained unchanged for more than 30 years. Tuberculosis (TB) drives matrix metalloproteinase (MMP) activity to cause immunopathology. In advanced HIV infection, tissue destruction is reduced, but underlying mechanisms are poorly defined and no current antituberculous therapy reduces host tissue damage. OBJECTIVES To investigate MMP activity in patients with TB with and without HIV coinfection and to determine the potential of doxycycline to inhibit MMPs and decrease pathology. METHODS Concentrations of MMPs and cytokines were analyzed by Luminex array in a prospectively recruited cohort of patients. Modulation of MMP secretion and Mycobacterium tuberculosis growth by doxycycline was studied in primary human cells and TB-infected guinea pigs. MEASUREMENTS AND MAIN RESULTS HIV coinfection decreased MMP concentrations in induced sputum of patients with TB. MMPs correlated with clinical markers of tissue damage, further implicating dysregulated protease activity in TB-driven pathology. In contrast, cytokine concentrations were no different. Doxycycline, a licensed MMP inhibitor, suppressed TB-dependent MMP-1 and -9 secretion from primary human macrophages and epithelial cells by inhibiting promoter activation. In the guinea pig model, doxycycline reduced lung TB colony forming units after 8 weeks in a dose-dependent manner compared with untreated animals, and in vitro doxycycline inhibited mycobacterial proliferation. CONCLUSIONS HIV coinfection in patients with TB reduces concentrations of immunopathogenic MMPs. Doxycycline decreases MMP activity in a cellular model and suppresses mycobacterial growth in vitro and in guinea pigs. Adjunctive doxycycline therapy may reduce morbidity and mortality in TB.

Collaboration


Dive into the Ann Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Chambers

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge