Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Sawhney is active.

Publication


Featured researches published by Simon Sawhney.


BMJ Open | 2015

Long-term prognosis after acute kidney injury (AKI): what is the role of baseline kidney function and recovery? A systematic review

Simon Sawhney; Mhairi Mitchell; Angharad Marks; Nicholas Fluck; Corri Black

Objectives To summarise the evidence from studies of acute kidney injury (AKI) with regard to the effect of pre-AKI renal function and post-AKI renal function recovery on long-term mortality and renal outcomes, and to assess whether these factors should be taken into account in future prognostic studies. Design/Setting A systematic review of observational studies listed in Medline and EMBASE from 1990 to October 2012. Participants All AKI studies in adults with data on baseline kidney function to identify AKI; with outcomes either stratified by pre-AKI and/or post-AKI kidney function, or described by the timing of the outcomes. Outcomes Long-term mortality and worsening chronic kidney disease (CKD). Results Of 7385 citations, few studies met inclusion criteria, reported baseline kidney function and stratified by pre-AKI or post-AKI function. For mortality outcomes, three studies compared patients by pre-AKI renal function and six by post-AKI function. For CKD outcomes, two studies compared patients by pre-AKI function and two by post-AKI function. The presence of CKD pre-AKI (compared with AKI alone) was associated with doubling of mortality and a fourfold to fivefold increase in CKD outcomes. Non-recovery of kidney function was associated with greater mortality and CKD outcomes in some studies, but findings were inconsistent varying with study design. Two studies also reported that risk of poor outcome reduced over time post-AKI. Meta-analysis was precluded by variations in definitions for AKI, CKD and recovery. Conclusions The long-term prognosis after AKI varies depending on cause and clinical setting, but it may also, in part, be explained by underlying pre-AKI and post-AKI renal function rather than the AKI episode itself. While carefully considered in clinical practice, few studies address these factors and with inconsistent study design. Future AKI studies should report pre-AKI and post-AKI function consistently as additional factors that may modify AKI prognosis.


Nephrology Dialysis Transplantation | 2015

Acute kidney injury—how does automated detection perform?

Simon Sawhney; Nick Fluck; Angharad Marks; Gordon Prescott; William G. Simpson; Laurie A. Tomlinson; Corri Black

Background Early detection of acute kidney injury (AKI) is important for safe clinical practice. NHS England is implementing a nationwide automated AKI detection system based on changes in blood creatinine. Little has been reported on the similarities and differences of AKI patients detected by this algorithm and other definitions of AKI in the literature. Methods We assessed the NHS England AKI algorithm and other definitions using routine biochemistry in our own health authority in Scotland in 2003 (adult population 438 332). Linked hospital episode codes (ICD-10) were used to identify patients where AKI was a major clinical diagnosis. We compared how well the algorithm detected this subset of AKI patients in comparison to other definitions of AKI. We also evaluated the potential ‘alert burden’ from using the NHS England algorithm in comparison to other AKI definitions. Results Of 127 851 patients with at least one blood test in 2003, the NHS England AKI algorithm identified 5565 patients. The combined NHS England algorithm criteria detected 91.2% (87.6–94.0) of patients who had an ICD-10 AKI code and this was better than any individual AKI definition. Some of those not captured could be identified by algorithm modifications to identify AKI in retrospect after recovery, but this would not be practical in real-time. Any modifications also increased the number of alerted patients (2-fold in the most sensitive model). Conclusions The NHS England AKI algorithm performs well as a diagnostic adjunct in clinical practice. In those without baseline data, AKI may only be seen in biochemistry in retrospect, therefore proactive clinical care remains essential. An alternative algorithm could increase the diagnostic sensitivity, but this would also produce a much greater burden of patient alerts.


Nephrology Dialysis Transplantation | 2016

KDIGO-based acute kidney injury criteria operate differently in hospitals and the community—findings from a large population cohort

Simon Sawhney; Nick Fluck; Simon D.S. Fraser; Angharad Marks; Gordon Prescott; Paul Roderick; Corri Black

Background Early recognition of acute kidney injury (AKI) is important. It frequently develops first in the community. KDIGO-based AKI e-alert criteria may help clinicians recognize AKI in hospitals, but their suitability for application in the community is unknown. Methods In a large renal cohort (n = 50 835) in one UK health authority, we applied the NHS England AKI ‘e-alert’ criteria to identify and follow three AKI groups: hospital-acquired AKI (HA-AKI), community-acquired AKI admitted to hospital within 7 days (CAA-AKI) and community-acquired AKI not admitted within 7 days (CANA-AKI). We assessed how AKI criteria operated in each group, based on prior blood tests (number and time lag). We compared 30-day, 1- and 5-year mortality, 90-day renal recovery and chronic renal replacement therapy (RRT). Results In total, 4550 patients met AKI e-alert criteria, 61.1% (2779/4550) with HA-AKI, 22.9% (1042/4550) with CAA-AKI and 16.0% (729/4550) with CANA-AKI. The median number of days since last blood test differed between groups (1, 52 and 69 days, respectively). Thirty-day mortality was similar for HA-AKI and CAA-AKI, but significantly lower for CANA-AKI (24.2, 20.2 and 2.6%, respectively). Five-year mortality was high in all groups, but followed a similar pattern (67.1, 64.7 and 46.2%). Differences in 5-year mortality among those not admitted could be explained by adjusting for comorbidities and restricting to 30-day survivors (hazard ratio 0.91, 95% confidence interval 0.80–1.04, versus hospital AKI). Those with CANA-AKI (versus CAA-AKI) had greater non-recovery at 90 days (11.8 versus 3.5%, P < 0.001) and chronic RRT at 5 years (3.7 versus 1.2%, P < 0.001). Conclusions KDIGO-based AKI criteria operate differently in hospitals and in the community. Some patients may not require immediate admission but are at substantial risk of a poor long-term outcome.


American Journal of Kidney Diseases | 2017

Intermediate and Long-term Outcomes of Survivors of Acute Kidney Injury Episodes: A Large Population-Based Cohort Study

Simon Sawhney; Angharad Marks; Nick Fluck; Adeera Levin; Gordon Prescott; Corri Black

Background The long-term prognosis after acute kidney injury (AKI) is variable. It is unclear how the prognosis of AKI and its relationship to prognostic factors (baseline kidney function, AKI severity, prior AKI episodes, and recovery of kidney function) change as follow-up progresses. Study Design Observational cohort study. Setting & Participants The Grampian Laboratory Outcomes Morbidity and Mortality Study II (GLOMMS-II) is a large regional population cohort with complete serial biochemistry and outcome data capture through data linkage. From GLOMMS-II, we followed up 17,630 patients hospitalized in 2003 through to 2013. Predictors AKI identified using KDIGO (Kidney Disease: Improving Global Outcomes) serum creatinine criteria, characterized by baseline kidney function (estimated glomerular filtration rate [eGFR] ≥ 60, 45-59, 30-44, and <30 mL/min/1.73 m2), AKI severity (KDIGO stage), 90-day recovery of kidney function, and prior AKI episodes. Outcomes Intermediate- (30-364 days) and long-term (1-10 years) mortality and long-term renal replacement therapy. Measurements Poisson regression in time discrete intervals. Multivariable Cox regression for those at risk in the intermediate and long term, adjusted for age, sex, baseline comorbid conditions, and acute admission circumstances. Results Of 17,630 patients followed up for a median of 9.0 years, 9,251 died. Estimated incidences of hospital AKI were 8.4% and 17.6% for baseline eGFRs ≥ 60 and <60 mL/min/1.73 m2, respectively. Intermediate-term (30-364 days) adjusted mortality HRs for AKI versus no AKI were 2.48 (95% CI, 2.15-2.88), 2.50 (95% CI, 2.04-3.06), 1.90 (95% CI, 1.51-2.39), and 1.63 (95% CI, 1.20-2.22) for eGFRs ≥ 60, 45 to 59, 30 to 44, and <30 mL/min/1.73 m2, respectively. Among 1-year survivors, long-term HRs were attenuated: 1.44 (95% CI, 1.31-1.58), 1.25 (95% CI, 1.09-1.43), 1.21 (95% CI, 1.03-1.42), and 1.08 (95% CI, 0.85-1.36), respectively. The excess long-term hazards in AKI were lower for lower baseline eGFRs (P for interaction = 0.01). Limitations Nonprotocolized observational data. No adjustment for albuminuria. Conclusions The prognostic importance of a discrete AKI episode lessens over time. Baseline kidney function is of greater long-term importance.


Kidney International | 2017

Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury

Simon Sawhney; Angharad Marks; Nick Fluck; Adeera Levin; David J. McLernon; Gordon Prescott; Corri Black

The extent to which renal progression after acute kidney injury (AKI) arises from an initial step drop in kidney function (incomplete recovery), or from a long-term trajectory of subsequent decline, is unclear. This makes it challenging to plan or time post-discharge follow-up. This study of 14651 hospital survivors in 2003 (1966 with AKI, 12685 no AKI) separates incomplete recovery from subsequent renal decline by using the post-discharge estimated glomerular filtration rate (eGFR) rather than the pre-admission as a new reference point for determining subsequent renal outcomes. Outcomes were sustained 30% renal decline and de novo CKD stage 4, followed from 2003-2013. Death was a competing risk. Overall, death was more common than subsequent renal decline (37.5% vs 11.3%) and CKD stage 4 (4.5%). Overall, 25.7% of AKI patients had non-recovery. Subsequent renal decline was greater after AKI (vs no AKI) (14.8% vs 10.8%). Renal decline after AKI (vs no AKI) was greatest among those with higher post-discharge eGFRs with multivariable hazard ratios of 2.29 (1.88-2.78); 1.50 (1.13-2.00); 0.94 (0.68-1.32) and 0.95 (0.64-1.41) at eGFRs of 60 or more; 45-59; 30-44 and under 30, respectively. The excess risk after AKI persisted over ten years of study, irrespective of AKI severity, or post-episode proteinuria. Thus, even if post-discharge kidney function returns to normal, hospital admission with AKI is associated with increased renal progression that persists for up to ten years. Follow-up plans should avoid false reassurance when eGFR after AKI returns to normal.


PLOS ONE | 2015

Maximising Acute Kidney Injury Alerts – A Cross-Sectional Comparison with the Clinical Diagnosis

Simon Sawhney; Angharad Marks; Tariq Ali; Laura Clark; Nick Fluck; Gordon Prescott; William G. Simpson; Corri Black

Background Acute kidney injury (AKI) is serious and widespread across healthcare (1 in 7 hospital admissions) but recognition is often delayed causing avoidable harm. Nationwide automated biochemistry alerts for AKI stages 1-3 have been introduced in England to improve recognition. We explored how these alerts compared with clinical diagnosis in different hospital settings. Methods We used a large population cohort of 4464 patients with renal impairment. Each patient had case-note review by a nephrologist, using RIFLE criteria to diagnose AKI and chronic kidney disease (CKD). We identified and staged AKI alerts using the new national NHS England AKI algorithm and compared this with nephrologist diagnosis across hospital settings. Results Of 4464 patients, 525 had RIFLE AKI, 449 had mild AKI, 2185 had CKD (without AKI) and 1305 were of uncertain chronicity. NHS AKI algorithm criteria alerted for 90.5% of RIFLE AKI, 72.4% of mild AKI, 34.1% of uncertain cases and 14.0% of patients who actually had CKD.The algorithm identified AKI particularly well in intensive care (95.5%) and nephrology (94.6%), but less well on surgical wards (86.4%). Restricting the algorithm to stage 2 and 3 alerts reduced the over-diagnosis of AKI in CKD patients from 14.0% to 2.1%, but missed or delayed alerts in two-thirds of RIFLE AKI patients. Conclusion Automated AKI detection performed well across hospital settings, but was less sensitive on surgical wards. Clinicians should be mindful that restricting alerts to stages 2-3 may identify fewer CKD patients, but including stage 1 provides more sensitive and timely alerting.


Advances in Chronic Kidney Disease | 2017

Epidemiology of AKI: Utilizing Large Databases to Determine the Burden of AKI

Simon Sawhney; Simon D.S. Fraser

Large observational databases linking kidney function and other routine patient health data are increasingly being used to study acute kidney injury (AKI). Routine health care data show an apparent rise in the incidence of population AKI and an increase in acute dialysis. Studies also report an excess in mortality and adverse renal outcomes after AKI, although with variation depending on AKI severity, baseline, definition of renal recovery, and the time point during follow-up. However, differences in data capture, AKI awareness, monitoring, recognition, and clinical practice make comparisons between health care settings and periods difficult. In this review, we describe the growing role of large databases in determining the incidence and prognosis of AKI and evaluating initiatives to improve the quality of care in AKI. Using examples, we illustrate this use of routinely collected health data and discuss the strengths, limitations, and implications for researchers and clinicians.


Archive | 2015

Diagnostic sensitivity and false positive AKI alerts through unlinking of an integrated Grampian biochemistry service

Simon Sawhney; Nick Fluck; Angharad Marks; Corrinda Black

Background Grampian has a relatively unique position of an integrated biochemistry service for the whole region. This is helpful when studying AKI, where accurate baseline is crucial and one missing test result can alter findings. Ealert AKI systems that appear to perform reasonably in Grampian may not perform as well in other areas if care is shared across different services that are not integrated. Grampian biochemistry service contains two linked laboratories in Aberdeen and Elgin. Of 417295 patients with biochemistry profiles in Grampian 1999-2009, there were 32053 patients (7.7%) that had blood tests processed by each of the two laboratories (i.e. border patients). Without integration of the two laboratories, this minority of patients may be at risk of being misclassified by an automated detection algorithm. Note that in other areas the proportion of patients in border areas will vary greatly, but this analysis here has been restricted only to those 32053 bordering patients (integration will have made no difference in the others).


Nephrology Dialysis Transplantation | 2018

Predicting kidney failure risk after acute kidney injury among people receiving nephrology clinic care

Simon Sawhney; Monica Beaulieu; Corri Black; Ognjenka Djurdjev; Gabriela Espino-Hernandez; Angharad Marks; David J. McLernon; Zainab Sheriff; Adeera Levin

Abstract Background Outcomes after acute kidney injury (AKI) are well described, but not for those already under nephrology clinic care. This is where discussions about kidney failure risk are commonplace. We evaluated whether the established kidney failure risk equation (KFRE) should account for previous AKI episodes when used in this setting. Methods This observational cohort study included 7491 people referred for nephrology clinic care in British Columbia in 2003–09 followed to 2016. Predictors were previous Kidney Disease: Improving Global Outcomes–based AKI, age, sex, proteinuria, estimated glomerular filtration rate (eGFR) and renal diagnosis. Outcomes were 5-year kidney failure and death. We developed cause-specific Cox models (AKI versus no AKI) for kidney failure and death, stratified by eGFR (</≥30 mL/min/1.73 m2). We also compared prediction models comparing the 5-year KFRE with two refitted models, one with and one without AKI as a predictor. Results AKI was associated with increased kidney failure (33.1% versus 26.3%) and death (23.8% versus 16.8%) (P  < 0.001). In Cox models, AKI was independently associated with increased kidney failure in those with an eGFR ≥30 mL/min/1.73 m2 {hazard ratio [HR] 1.35 [95% confidence interval (CI) 1.07–1.70]}, no increase in those with eGFR <30 mL/min/1.73 m2 ([HR 1.05 95% CI 0.91–1.21)] and increased mortality in both subgroups [respective HRs 1.89 (95% CI 1.56–2.30) and 1.43 (1.16–1.75)]. Incorporating AKI into a refitted kidney failure prediction model did not improve predictions on comparison of receiver operating characteristics (P = 0.16) or decision curve analysis. The original KFRE calibrated poorly in this setting, underpredicting risk. Conclusions AKI carries a poorer long-term prognosis among those already under nephrology care. AKI may not alter kidney failure risk predictions, but the use of prediction models without appreciating the full impact of AKI, including increased mortality, would be simplistic. People with kidney diseases have risks beyond simply kidney failure. This complexity and variability of outcomes of individuals is important.


BMJ Open | 2018

Acute kidney injury in the UK: a replication cohort study of the variation across three regional populations

Simon Sawhney; Heather Robinson; Sabine N. van der Veer; Hilda Osafo Hounkpatin; Timothy Scale; James Chess; Niels Peek; Angharad Marks; G.I. Davies; Paolo Fraccaro; Matthew Johnson; Ronan Lyons; Dorothea Nitsch; Paul Roderick; Nynke Halbesma; Eve Miller-Hodges; Corrinda Black

Objectives A rapid growth in the reported rates of acute kidney injury (AKI) has led to calls for greater attention and greater resources for improving care. However, the reported incidence of AKI also varies more than tenfold between previous studies. Some of this variation is likely to stem from methodological heterogeneity. This study explores the extent of cross-population variation in AKI incidence after minimising heterogeneity. Design Population-based cohort study analysing data from electronic health records from three regions in the UK through shared analysis code and harmonised methodology. Setting Three populations from Scotland, Wales and England covering three time periods: Grampian 2003, 2007 and 2012; Swansea 2007; and Salford 2012. Participants All residents in each region, aged 15 years or older. Main outcome measures Population incidence of AKI and AKI phenotype (severity, recovery, recurrence). Determined using shared biochemistry-based AKI episode code and standardised by age and sex. Results Respectively, crude AKI rates (per 10 000/year) were 131, 138, 139, 151 and 124 (p=0.095), and after standardisation for age and sex: 147, 151, 146, 146 and 142 (p=0.257) for Grampian 2003, 2007 and 2012; Swansea 2007; and Salford 2012. The pattern of variation in crude rates was robust to any modifications of the AKI definition. Across all populations and time periods, AKI rates increased substantially with age from ~20 to ~550 per 10 000/year among those aged <40 and ≥70 years. Conclusion When harmonised methods are used and age and sex differences are accounted for, a similar high burden of AKI is consistently observed across different populations and time periods (~150 per 10 000/year). There are particularly high rates of AKI among older people. Policy-makers should be careful not draw simplistic assumptions about variation in AKI rates based on comparisons that are not rigorous in methodological terms.

Collaboration


Dive into the Simon Sawhney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corri Black

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar

Nick Fluck

Aberdeen Royal Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge