Simon T. Powers
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon T. Powers.
Information Sciences | 2008
Simon T. Powers; Jun He
Network intrusion detection is the problem of detecting unauthorised use of, or access to, computer systems over a network. Two broad approaches exist to tackle this problem: anomaly detection and misuse detection. An anomaly detection system is trained only on examples of normal connections, and thus has the potential to detect novel attacks. However, many anomaly detection systems simply report the anomalous activity, rather than analysing it further in order to report higher-level information that is of more use to a security officer. On the other hand, misuse detection systems recognise known attack patterns, thereby allowing them to provide more detailed information about an intrusion. However, such systems cannot detect novel attacks. A hybrid system is presented in this paper with the aim of combining the advantages of both approaches. Specifically, anomalous network connections are initially detected using an artificial immune system. Connections that are flagged as anomalous are then categorised using a Kohonen Self Organising Map, allowing higher-level information, in the form of cluster membership, to be extracted. Experimental results on the KDD 1999 Cup dataset show a low false positive rate and a detection and classification rate for Denial-of-Service and User-to-Root attacks that is higher than those in a sample of other works.
Evolution | 2011
Simon T. Powers; Alexandra S. Penn; Richard A. Watson
The evolution of cooperation often depends upon population structure, yet nearly all models of cooperation implicitly assume that this structure remains static. This is a simplifying assumption, because most organisms possess genetic traits that affect their population structure to some degree. These traits, such as a group size preference, affect the relatedness of interacting individuals and hence the opportunity for kin or group selection. We argue that models that do not explicitly consider their evolution cannot provide a satisfactory account of the origin of cooperation, because they cannot explain how the prerequisite population structures arise. Here, we consider the concurrent evolution of genetic traits that affect population structure, with those that affect social behavior. We show that not only does population structure drive social evolution, as in previous models, but that the opportunity for cooperation can in turn drive the creation of population structures that support it. This occurs through the generation of linkage disequilibrium between socio‐behavioral and population‐structuring traits, such that direct kin selection on social behavior creates indirect selection pressure on population structure. We illustrate our argument with a model of the concurrent evolution of group size preference and social behavior.
Journal of Theoretical Biology | 2012
Simon T. Powers; Daniel J. Taylor; Joanna J. Bryson
Pro-social punishment, whereby cooperators punish defectors, is often suggested as a mechanism that maintains cooperation in large human groups. Importantly, models that support this idea have to date only allowed defectors to be the target of punishment. However, recent empirical work has demonstrated the existence of anti-social punishment in public goods games. That is, individuals that defect have been found to also punish cooperators. Some recent theoretical studies have found that such anti-social punishment can prevent the evolution of pro-social punishment and cooperation. However, the evolution of anti-social punishment in group-structured populations has not been formally addressed. Previous work has informally argued that group-structure must favour pro-social punishment. Here we formally investigate how two demographic factors, group size and dispersal frequency, affect selection pressures on pro- and anti-social punishment. Contrary to the suggestions of previous work, we find that anti-social punishment can prevent the evolution of pro-social punishment and cooperation under a range of group structures. Given that anti-social punishment has now been found in all studied extant human cultures, the claims of previous models showing the co-evolution of pro-social punishment and cooperation in group-structured populations should be re-evaluated.
Philosophical Transactions of the Royal Society B | 2016
Simon T. Powers; Carel P. van Schaik; Laurent Lehmann
What drove the transition from small-scale human societies centred on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default ‘Hobbesian’ rules of the ‘game of life’, determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Examples include rules of food sharing in hunter–gatherers, rules for the usage of irrigation systems in agriculturalists, property rights and systems for sharing reputation between mediaeval traders. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. We explain how cooperative breeding likely selected for these abilities early in the Homo lineage. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization.
european conference on artificial life | 2009
Richard A. Watson; Niclas Palmius; Rob Mills; Simon T. Powers; Alexandra S. Penn
The role of symbiosis in macro-evolution is poorly understood. On the one hand, symbiosis seems to be a perfectly normal manifestation of individual selection, on the other hand, in some of the major transitions in evolution it seems to be implicated in the creation of new higher-level units of selection. Here we present a model of individual selection for symbiotic relationships where individuals can genetically specify traits which partially control which other species they associate with - i.e. they can evolve species-specific grouping. We find that when the genetic evolution of symbiotic relationships occurs slowly compared to ecological population dynamics, symbioses form which canalise the combinations of species that commonly occur at local ESSs into new units of selection. Thus even though symbioses will only evolve if they are beneficial to the individual, we find that the symbiotic groups that form are selectively significant and result in combinations of species that are more cooperative than would be possible under individual selection. These findings thus provide a systematic mechanism for creating significant higher-level selective units from individual selection, and support the notion of a significant and systematic role of symbiosis in macroevolution.
Ecology Letters | 2013
Simon T. Powers; Laurent Lehmann
Human cooperation is typically coordinated by institutions, which determine the outcome structure of the social interactions individuals engage in. Explaining the Neolithic transition from small- to large-scale societies involves understanding how these institutions co-evolve with demography. We study this using a demographically explicit model of institution formation in a patch-structured population. Each patch supports both social and asocial niches. Social individuals create an institution, at a cost to themselves, by negotiating how much of the costly public good provided by cooperators is invested into sanctioning defectors. The remainder of their public good is invested in technology that increases carrying capacity, such as irrigation systems. We show that social individuals can invade a population of asocials, and form institutions that support high levels of cooperation. We then demonstrate conditions where the co-evolution of cooperation, institutions, and demographic carrying capacity creates a transition from small- to large-scale social groups.
Evolutionary Biology-new York | 2016
Richard A. Watson; Rob Mills; Christopher L. Buckley; Konstantinos Kouvaris; Adam Jackson; Simon T. Powers; Chris R. Cox; Simon Tudge; Adam Davies; Loizos Kounios; Daniel Power
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.
european conference on artificial life | 2007
Simon T. Powers; Alexandra S. Penn; Richard A. Watson
It is well known that certain environmental conditions, such as a spatially structured population, can promote the evolution of cooperative traits. However, such conditions are usually assumed to be externally imposed. In this paper, we present a model that allows the conditions that promote or hinder cooperation to arise adaptively via individual selection. Consequently, instead of selection simply favouring cooperation under imposed environmental conditions, in our model selection also operates on the conditions themselves via a niche construction process. Results are presented that show that the conditions that favour cooperation can evolve, even though those that favour selfish behaviour are also available and are initially selected for.
Biology Direct | 2015
Daniel Power; Richard A. Watson; Eörs Szathmáry; Rob Mills; Simon T. Powers; C. Patrick Doncaster; BłaŻej Czapp
BackgroundThe structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole?ResultsHere we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, ‘unsupervised learning’, well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community’s response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts.ConclusionsThis work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions.ReviewersThis article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.
Biology and Philosophy | 2016
P. A. Ryan; Simon T. Powers; Richard A. Watson
Social evolution theory conventionally takes an externalist explanatory stance, treating observed cooperation as explanandum and the positive assortment of cooperative behaviour as explanans. We ask how the circumstances bringing about this positive assortment arose in the first place. Rather than merely push the explanatory problem back a step, we move from an externalist to an interactionist explanatory stance, in the spirit of Lewontin and the Niche Construction theorists. We develop a theory of ‘social niche construction’ in which we consider biological entities to be both the subject and object of their own social evolution. Some important cases of the evolution of cooperation have the side-effect of causing changes in the hierarchical level at which the evolutionary process acts. This is because the traits (e.g. life-history bottlenecks) that act to align the fitness interests of particles (e.g. cells) in a collective can also act to diminish the extent to which those particles are bearers of heritable fitness variance, while augmenting the extent to which collectives of such particles (e.g. multicellular organisms) are bearers of heritable fitness variance. In this way, we can explain upward transitions in the hierarchical level at which the Darwinian machine operates in terms of particle-level selection, even though the outcome of the process is a collective-level selection regime. Our theory avoids the logical and metaphysical paradoxes faced by other attempts to explain evolutionary transitions.