Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Consoli is active.

Publication


Featured researches published by Simona Consoli.


Sensors | 2009

A One-Layer Satellite Surface Energy Balance for Estimating Evapotranspiration Rates and Crop Water Stress Indexes

Salvatore Barbagallo; Simona Consoli; Alfonso Russo

Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (rah) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (rs) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach “Kc reflectance-based”, which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.


Water Science and Technology | 2012

Analysis of treated wastewater reuse potential for irrigation in Sicily

Salvatore Barbagallo; Giuseppe Luigi Cirelli; Simona Consoli; Feliciana Licciardello; Alessia Marzo

In Mediterranean countries, water shortage is becoming a problem of high concern affecting the local economy, mostly based on agriculture. The problem is not only the scarcity of water in terms of average per capita, but the high cost to make water available at the right place, at the right time with the required quality. In these cases, an integrated approach for water resources management including wastewater is required. The management should also include treated wastewater (TWW) reclamation and reuse, especially for agricultural irrigation. In Italy, TWW reuse is regulated by a quite restrictive approach (Ministry Decree, M.D. 185/03), especially for some chemical compounds and microbiological parameters. The aim of the paper is the evaluation of TWW reuse potential in Sicily. A Geographic Information System (GIS) was built at regional level to quantify and locate the available TWW volumes. In particular, the characteristics of wastewater treatment plants (WWTPs) were integrated, through the GIS, with data on irrigation district areas. Moreover, in order to evaluate the Italian approach for reuse practice in agriculture, the water quality of different TWW effluents was analysed on the basis of both the Italian standards and the WHO guidelines.


Journal of Irrigation and Drainage Engineering-asce | 2013

Determination of Evapotranspiration and Annual Biomass Productivity of a Cactus Pear [Opuntia ficus-indica L. (Mill.)] Orchard in a Semiarid Environment

Simona Consoli; Guglielmo Inglese; P. Inglese

AbstractA micrometeorological approach based on the surface energy balance was adopted to estimate evapotranspiration fluxes and crop coefficient data from an irrigated cactus pear [Opuntia ficus-indica L. (Mill.)] orchard under Mediterranean climatic conditions. High-frequency temperature readings were taken above the canopy top to get sensible heat flux values (HSR) using the surface renewal technique. These values were compared against eddy covariance sensible heat fluxes (HEC) for calibration. Latent heat flux (or evapotranspiration, ET) was obtained by solving the daily energy balance equation. Measurements of soil hydraulic components were integrated with the analysis of the surface energy fluxes and crop development in terms of phenology and aboveground biomass accumulation. Microlysimeters were used to compute evaporation rates, allowing the separation of daily transpiration from ET data. Ecophysiological measurements were carried to estimate dry weight accumulation and partitioning. Cactus pear e...


Water Science and Technology | 2012

Risk assessment of treated municipal wastewater reuse in Sicily

Rosa Aiello; Giuseppe Luigi Cirelli; Simona Consoli; Feliciana Licciardello

In Italy, the restrictive approach for treated wastewater reuse in agriculture has led to some difficulties in promoting this practice. In order to assess the health risk associated with the use of wastewater in agriculture, an experiment was conducted in an open field near the constructed wetland (CW) system of San Michele di Ganzaria (Eastern Sicily), during the irrigation seasons 2004-2009. In particular the impact on tomato crops of drip and sub-drip irrigation with treated municipal wastewater, as well as effects of wastewater reuse on the irrigation system, main production features, hydrological soil behaviour, and microbial soil and products contamination were investigated. Notwithstanding the fact that globally CW effluents did not match microbiological standards for wastewater reuse of Italian legislation, the median infection risk (function of the recommended tolerable additional disease burden of 10(-6) DALY (disability-adjusted life year) loss per person per year) suggested by the 2006 World Health Organization Guidelines for rotavirus, Campylobacter and Cryptosporidium for lettuce irrigation under unrestricted irrigation scenario was achieved.


Irrigation Science | 2013

Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions

Simona Consoli; Rita Papa

In this paper, based on the analysis of a long-term energy balance monitoring programme, a Bowen ratio-based method (BR) was proposed to resolve the lack of closure of the eddy covariance technique to obtain reliable sensible (H) and latent heat fluxes (λE). Evapotranspiration (ET) values determined from the BR method (ETc,corr) were compared with the upscaled transpiration data determined by the sap flow heat pulse (HP) technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level. Using the BR-corrected λE fluxes, a crop ET model implementing the Penman–Monteith approach, where the canopy surface resistance was determined from standard microclimatic variables, was applied to determine the crop coefficient values. The performance of the model was evaluated by comparing it with the sap flow HP data. The results of the comparison were satisfactory, and therefore, the proposed methodology may be considered valid for characterizing the ET process for orange orchards grown in a Mediterranean climate. By contrast to reports in the FAO 56 paper, the crop growth coefficient of the orange orchard being studied was not constant throughout the growing season.


International Journal of Phytoremediation | 2016

Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation

A. Castorina; Simona Consoli; Salvatore Barbagallo; F. Branca; A. Farag; Feliciana Licciardello; Giuseppe Luigi Cirelli

ABSTRACT The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.


Journal of Environmental Management | 2009

Modelling Escherichia coli concentration in a wastewater reservoir using an operational parameter MRT%FE and first order kinetics.

Giuseppe Luigi Cirelli; Simona Consoli; Marcelo Juanicó

The operational parameter MRT%FE, representing the mean residence time of different ages fractions of effluent within a completely mixed reactor, was evaluated and integrated with first order kinetics. The parameter was used to model Escherichia coli concentrations in a municipal wastewater reservoir managed under different operating conditions (continuous and discontinuous). The study was conducted during 2004-2005 in a reservoir receiving effluents from the activated sludge treatment plant of Caltagirone (Eastern Sicily - Italy). The analytical approach is applied to the hydraulic state variables of the system (daily stored volumes, inlet and outlet flows), and the physical-chemical (pH, temperature, EC, TSS, BOD(5), COD) and bacteriological wastewater parameters (E. coli, FC, FS). In order to evaluate the reliability of the proposed approach, predicted E. coli concentrations within the reservoir were compared with measured ones by the correlation coefficient, F-test and Spermans index. The study included the evaluation of die-off coefficient K(T) (d(-1)), light extinction coefficient K (m(-1)) and their relationships with climatic factors. Results of the study confirm that E. coli removal is related to the fractions of fresh effluent remaining each day within the reservoir with MRT%FE of about 5-8d, significantly lower than the nominal detention time (about 27d). The E. coli die-off coefficient (K(T)) was higher during system discontinuous operations and correlated with incident solar radiation and water temperature.


Remote Sensing | 2006

Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI

Simona Consoli; Giuseppe Luigi Cirelli; Attilio Toscano

The structure of vegetation is paramount in regulating the exchange of mass and energy across the biosphereatmosphere interface. In particular, changes in vegetation density affected the partitioning of incoming solar energy into sensible and latent heat fluxes that may result in persistent drought through reductions in agricultural productivity and in the water resources availability. Limited research with citrus orchards has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigation when crop coefficient (Kc) estimate, derived from remotely sensed multispectral vegetation indices (VIs), are incorporated into irrigation-scheduling algorithms. The purpose of this article is the application of an empirical reflectance-based model for the estimation of Kc and evapotranspiration fluxes (ET) using ground observations on climatic data and high-resolution VIs from ASTER TERRA satellite imagery. The remote sensed Kc data were used in developing the relationship with the normalized difference vegetation index (NDVI) for orange orchards during summer periods. Validation of remote sensed data on ET, Kc and vegetation features was deal through ground data observations and the resolution of the energy balance to derive latent heat flux density (λE), using measures of net radiation (Rn) and soil heat flux density (G) and estimate of sensible heat flux density (H) from high frequency temperature measurements (Surface Renewal technique). The chosen case study is that of an irrigation area covered by orange orchards located in Eastern Sicily (Italy) during the irrigation seasons 2005 and 2006.


Remote Sensing | 2004

Remote sensing of crop water requirements in orange orchards using high-spatial-resolution sensors

Salvatore Barbagallo; Simona Consoli; Guido D'Urso; Rosaria Giorgio Gaggia; Attilio Toscano

With the aim to derive crop water requirements (ETp) for an irrigated area covered by orange orchard in Sicily, Quick Bird and ASTER TERRA high resolution satellites data were used and compared with reference to their different spatial and spectral resolution. Satellites data allowed to improve the monitoring of canopy development in the irrigated area by identifying biophysical vegetation variable (LAI, albedo, vegetation indicators, etc); this information was successively used for the evaluation of maximum crop water needs by means of the well known Penman-Monteith equation. The paper results evidence the importance of very-high resolution sensors such as QuickBird in areas characterised by strong spatial heterogeneity. The algorithms applied to estimate the canopy parameters and the crop water requirements were applied by considering different levels of radiometric calibration of the satellite data, which produced marked differences in the final results.


EARTH OBSERVATION FOR VEGETATION MONITORING AND WATER MANAGEMENT | 2006

Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques

Simona Consoli; Alfonso Russo; R. Snyder

Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman‐Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR‐EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.

Collaboration


Dive into the Simona Consoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Papa

University of Catania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge