Simone Denis
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Denis.
Journal of Inherited Metabolic Disease | 1995
R. J. A. Wanders; Simone Denis; J.P.N. Ruiter; R. B. H. Schutgens; C. W. T. van Roermund; B. S. Jacobs
SummaryOne of the main functions of mammalian peroxisomes is the β-oxidation of a variety of fatty acids and fatty acid derivatives, including very long-chain fatty acids. Oxidation of these fatty acids is deficient in a number of different peroxisomal disorders, including the disorders of peroxisome biogenesis (Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease), X-linked adrenoleukodystrophy and a number of other disorders of peroxisomal β-oxidation of known and unknown aetiology. Accurate measurement of peroxisomal fatty acid oxidation is of utmost importance for correct postnatal and prenatal diagnosis of these disorders. In this paper we describe a straightforward and accurate assay method to measure the β-oxidation of palmitic acid (C16:0), hexacosanoic acid (C26:0) and pristanic acid in intact fibroblasts.
Journal of Lipid Research | 2004
Sacha Ferdinandusse; Simone Denis; Carlo W.T. van Roermund; Georges Dacremont
Dicarboxylic acids (DCAs) are ω-oxidation products of monocarboxylic acids. After activation by a dicarboxylyl-CoA synthetase, the dicarboxylyl-CoA esters are shortened via β-oxidation. Although it has been studied extensively where this β-oxidation process takes place, the intracellular site of DCA oxidation has remained controversial. Making use of fibroblasts from patients with defined mitochondrial and peroxisomal fatty acid oxidation defects, we show in this paper that peroxisomes, and not mitochondria, are involved in the β-oxidation of C16DCA. Additional studies in fibroblasts from patients with X-linked adrenoleukodystrophy, straight-chain acyl-CoA oxidase (SCOX) deficiency, d-bifunctional protein (DBP) deficiency, and rhizomelic chondrodysplasia punctata type 1, together with direct enzyme measurements with human recombinant l-bifunctional protein (LBP) and DBP expressed in a fox2 deletion mutant of Saccharomyces cerevisiae, show that the main enzymes involved in β-oxidation of C16DCA are SCOX, both LBP and DBP, and sterol carrier protein X, possibly together with the classic 3-ketoacyl-CoA thiolase. This is the first indication of a specific function for LBP, which has remained elusive until now.
American Journal of Human Genetics | 2006
Sacha Ferdinandusse; P. Kostopoulos; Simone Denis; H. Rusch; Henk Overmars; U. Dillmann; W. Reith; Dorothea Haas; R. J. A. Wanders; M. Duran; M. Marziniak
In this report, we describe the first known patient with a deficiency of sterol carrier protein X (SCPx), a peroxisomal enzyme with thiolase activity, which is required for the breakdown of branched-chain fatty acids. The patient presented with torticollis and dystonic head tremor as well as slight cerebellar signs with intention tremor, nystagmus, hyposmia, and azoospermia. Magnetic resonance imaging showed leukencephalopathy and involvement of the thalamus and pons. Metabolite analyses of plasma revealed an accumulation of the branched-chain fatty acid pristanic acid, and abnormal bile alcohol glucuronides were excreted in urine. In cultured skin fibroblasts, the thiolytic activity of SCPx was deficient, and no SCPx protein could be detected by western blotting. Mutation analysis revealed a homozygous 1-nucleotide insertion, 545_546insA, leading to a frameshift and premature stop codon (I184fsX7).
Journal of Medical Genetics | 2010
Merel S. Ebberink; Barbara Csányi; Wui K Chong; Simone Denis; Peter Sharp; Petra A. W. Mooijer; Conny Dekker; Claire Spooner; Lock Hock Ngu; Carlos de Sousa; Ronald J. A. Wanders; Michael Fietz; Peter Clayton; Hans R. Waterham; Sacha Ferdinandusse
Background Zellweger syndrome spectrum disorders are caused by mutations in any of at least 12 different PEX genes. This includes PEX16, which encodes an integral peroxisomal membrane protein involved in peroxisomal membrane assembly. PEX16-defective patients have been reported to have a severe clinical presentation. Fibroblasts from these patients displayed a defect in the import of peroxisomal matrix and membrane proteins, resulting in a total absence of peroxisomal remnants. Objective To report on six patients with an unexpected mild variant peroxisome biogenesis disorder due to mutations in the PEX16 gene. Patients presented in the preschool years with progressive spastic paraparesis and ataxia (with a characteristic pattern of progressive leucodystrophy and brain atrophy on MRI scan) and later developed cataracts and peripheral neuropathy. Surprisingly, their fibroblasts showed enlarged, import-competent peroxisomes. Results Plasma analysis revealed biochemical abnormalities suggesting a peroxisomal disorder. Biochemical variables in fibroblasts were only mildly abnormal or within the normal range. Immunofluorescence microscopy revealed the presence of import-competent peroxisomes, which were increased in size but reduced in number. Subsequent sequencing of all known PEX genes revealed five novel apparent homozygous mutations in the PEX16 gene. Conclusions An unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene, with a relatively mild clinical phenotype and an unexpected phenotype in fibroblasts, was identified. Although PEX16 is involved in peroxisomal membrane assembly, PEX16 defects can present with enlarged import-competent peroxisomes in fibroblasts. This is important for future diagnostics of patients with a peroxisomal disorder.
Journal of Lipid Research | 2012
Sander M. Houten; Simone Denis; Carmen A. Argmann; Yuzhi Jia; Sacha Ferdinandusse; Janardan K. Reddy
L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadhs expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting.
Journal of Lipid Research | 2009
Sacha Ferdinandusse; Simone Denis; Phyllis L. Faust; Ronald J. A. Wanders
It is well established that peroxisomes play a crucial role in de novo bile acid synthesis. Studies in patients with a peroxisomal disorder have been indispensable for the elucidation of the precise role of peroxisomes. Several peroxisomal disorders are associated with distinct bile acid abnormalities and each disorder has a characteristic pattern of abnormal bile acids that accumulate, which is often used for diagnostic purposes. The patients have also been important for determining the pathophysiological consequences of defects in bile acid biosynthesis. In this review, we will discuss all the peroxisomal steps involved in bile acid synthesis and the bile acid abnormalities in patients with peroxisomal disorders. We will show the results of bile acid measurements in several tissues from patients, including brain, and we will discuss the toxicity and the pathological effects of the abnormal bile acids.
American Journal of Human Genetics | 2002
Sacha Ferdinandusse; E. G. van Grunsven; Wendy Oostheim; Simone Denis; Eveline M Hogenhout; Lodewijk IJlst; C. W. T. van Roermund; Hans R. Waterham; S. Goldfischer; R. J. A. Wanders
In this report, we reinvestigate the only patient ever reported with a deficiency of peroxisomal 3-ketoacyl-CoA thiolase (THIO). At the time when they were described, the abnormalities in this patient, which included accumulation of very-long-chain fatty acids and the bile-acid intermediate trihydroxycholestanoic acid, were believed to be the logical consequence of a deficiency of the peroxisomal beta-oxidation enzyme THIO. In light of the current knowledge of the peroxisomal beta-oxidation system, however, the reported biochemical aberrations can no longer be explained by a deficiency of this thiolase. In this study, we show that the true defect in this patient is at the level of d-bifunctional protein (DBP). Immunoblot analysis revealed the absence of DBP in postmortem brain of the patient, whereas THIO was normally present. In addition, we found that the patient had a homozygous deletion of part of exon 3 and intron 3 of the DBP gene, resulting in skipping of exon 3 at the cDNA level. Our findings imply that the group of single-peroxisomal beta-oxidation-enzyme deficiencies is limited to straight-chain acyl-CoA oxidase, DBP, and alpha-methylacyl-CoA racemase deficiency and that there is no longer evidence for the existence of THIO deficiency as a distinct clinical entity.
Circulation-cardiovascular Imaging | 2011
Adrianus J. Bakermans; Tom R. Geraedts; Michel van Weeghel; Simone Denis; Maria J. Ferraz; Johannes M. F. G. Aerts; Jan Aten; Klaas Nicolay; Sander M. Houten; Jeanine J. Prompers
Background— Lipotoxicity may be a key contributor to the pathogenesis of cardiac abnormalities in mitochondrial long-chain fatty acid &bgr;-oxidation (FAO) disorders. Few data are available on myocardial lipid levels and cardiac performance in FAO deficiencies. The purpose of this animal study is to assess fasting-induced changes in cardiac morphology, function, and triglyceride (TG) storage as a consequence of FAO deficiency in a noninvasive fashion. Methods and Results— MRI and proton magnetic resonance spectroscopy (1H-MRS) were applied in vivo in long-chain acyl-CoA dehydrogenase (LCAD) knockout (KO) mice and wild-type (WT) mice (n=8 per genotype). Fasting was used to increase the hearts dependency on FAO for maintenance of energy homeostasis. In vivo data were complemented with ex vivo measurements of myocardial lipids. Left ventricular (LV) mass was higher in LCAD KO mice compared with WT mice (P<0.05), indicating LV myocardial hypertrophy. Myocardial TG content was higher in LCAD KO mice at baseline (P<0.001) and further increased in fasted LCAD KO mice (P<0.05). Concomitantly, LV ejection fraction (P<0.01) and diastolic filling rate (P<0.01) decreased after fasting, whereas these functional parameters did not change in fasted WT mice. Myocardial ceramide content was higher in fasted LCAD KO mice compared with fasted WT mice (P<0.05). Conclusions— Using a noninvasive approach, this study reveals accumulation of myocardial TG in LCAD KO mice. Toxicity of accumulating lipid metabolites such as ceramides may be responsible for the fasting-induced impairment of cardiac function observed in the LCAD KO mouse.
Biochimica et Biophysica Acta | 1992
Simone Denis
In this paper we have investigated whether or not superoxide dismutase is localized in peroxisomes from rat liver. Using an improved method to prepare peroxisomes from clofibrate induced rat livers, we identified superoxide dismutase activity in peroxisomes. This activity was found to be predominantly of the copper-zinc type. The finding of superoxide dismutase activity in peroxisomes makes sense since peroxisomes also contain superoxide generating enzyme activities such as xanthine oxidase.
Biochimica et Biophysica Acta | 1998
Simone Denis; Jos P.N. Ruiter; Lodewijk IJlst; Georges Dacremont
Oxidation of straight-chain fatty acids in mitochondria involves the complicated interaction between a large variety of different enzymes. So far four different mitochondrial straight-chain acyl-CoA dehydrogenases have been identified. The physiological function of three of the four acyl-CoA dehydrogenases has been resolved in recent years especially from studies on patients suffering from certain inborn errors of mitochondrial fatty acid beta-oxidation. The physiological role of long-chain acyl-CoA dehydrogenase (LCAD) has remained obscure, however. The results described in this paper provide strong evidence suggesting that LCAD plays a central role in branched-chain fatty acid metabolism since it turns out to be the major acyl-CoA dehydrogenase reacting with 2,6-dimethylheptanoyl-CoA, a metabolite of pristanic acid, which itself is the alpha-oxidation product of phytanic acid.