Simone Di Franco
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Di Franco.
Journal of Immunology | 2013
Rossana Tallerico; Matilde Todaro; Simone Di Franco; Cristina Maccalli; Cinzia Garofalo; Rosa Sottile; Camillo Palmieri; Luca Tirinato; Pradeepa Pangigadde; Rosanna La Rocca; Ofer Mandelboim; Giorgio Stassi; Enzo Di Fabrizio; Giorgio Parmiani; Alessandro Moretta; Francesco Dieli; Klas Kärre; Ennio Carbone
Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the “differentiated” cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma–derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the “differentiated” tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors.
Stem Cells | 2015
Luca Tirinato; Carlo Liberale; Simone Di Franco; Patrizio Candeloro; Antonina Benfante; Rosanna La Rocca; Lisette Potze; Roberto Marotta; Roberta Ruffilli; Vijayakumar P. Rajamanickam; Mario Malerba; Francesco De Angelis; Andrea Falqui; Ennio Carbone; Matilde Todaro; Jan Paul Medema; Giorgio Stassi; Enzo Di Fabrizio
The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label‐free Raman spectroscopy and it directly correlates with well‐accepted CR‐CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR‐CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR‐CSCs. Stem Cells 2015;33:35–44
Stem Cells | 2012
Federica Francescangeli; M Patrizii; Michele Signore; Giulia Federici; Simone Di Franco; Alfredo Pagliuca; Marta Baiocchi; Mauro Biffoni; Lucia Ricci Vitiani; Matilde Todaro; Ruggero De Maria; Ann Zeuner
Tumor‐initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor‐initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies. Here, we show that tumorigenic colon cancer cells can be found in a rapidly proliferating state in vitro and in vivo, both in human tumors and mouse xenografts. Inhibitors of polo‐like kinase1 (Plk1), a mitotic kinase essential for cell proliferation, demonstrated maximal efficiency over other targeted compounds and chemotherapeutic agents in inducing death of colon cancer‐initiating cells in vitro. In vivo, Plk1 inhibitors killed CD133+ colon cancer cells leading to complete growth arrest of colon cancer stem cell‐derived xenografts, whereas chemotherapeutic agents only slowed tumor progression. While chemotherapy treatment increased CD133+ cell proliferation, treatment with Plk1 inhibitors eliminated all proliferating tumor‐initiating cells. Quiescent CD133+ cells that survived the treatment with Plk1 inhibitors could be killed by subsequent Plk1 inhibition when they exited from quiescence. Altogether, these results provide a new insight into the proliferative status of colon tumor‐initiating cells both in basal conditions and in response to therapy and indicate Plk1 inhibitors as potentially useful in the treatment of colorectal cancer. Stem Cells2012;30:1819–1830
Expert Opinion on Therapeutic Targets | 2012
Francesco Dieli; Giorgio Stassi; Matilde Todaro; Flora Iovino; Veronica Catalano; Simone Di Franco
Introduction: Recent evidence based on cancer stem cell (CSC) models, is boosting the progress of translational research and providing relevant clinical implications in many tumour types, including colorectal cancer. The current failure of standard therapies is attributed to a small fraction of the primary cell population with stem-like characteristics, such as self-renewal and differentiation. Identification of CSCs is based on two different criteria of selection: stemness-selective conditions and direct isolation based on putative stem cell markers expression. CD133, a transmembrane glycoprotein, was associated with tumor-initiating cells derived from several histological variants of tumors, including colon. Areas covered: In this review the current understandings about CD133 as putative marker of tumour-initiating cells in colorectal cancer (CRC) is described. The focus of the discussion is on the need for additional markers to better identify the cell population able to recapitulate the parental tumor in immunocompromised mice. Expert opinion: Identification and characterization of CSCs represents a relevant issue to define innovative therapeutic approaches, overcoming the emergence of cancer cell clones capable of evading standard therapy.
Oncotarget | 2016
Bregje van Oorschot; Giovanna Granata; Simone Di Franco; Rosemarie ten Cate; Hans M. Rodermond; Matilde Todaro; Jan Paul Medema; Nicolaas A. P. Franken
Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation. The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found. In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.
Gut | 2018
Gwenola Manic; Michele Signore; Antonella Sistigu; Giorgio Russo; Francesca Corradi; Silvia Siteni; Martina Musella; Sara Vitale; Maria Laura De Angelis; Matteo Pallocca; Carla Azzurra Amoreo; Francesca Sperati; Simone Di Franco; Sabina Barresi; Eleonora Policicchio; Gabriele De Luca; Francesca De Nicola; Marcella Mottolese; Ann Zeuner; Maurizio Fanciulli; Giorgio Stassi; Marcello Maugeri-Saccà; Marta Baiocchi; Marco Tartaglia; Ilio Vitale; Ruggero De Maria
Objective Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies. Design To discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein microarray (RPPA) and cytogenetic analyses, and validated by immunostainings. DNA replication stress (RS) was increased by employing DNA replication-perturbing or polyploidising agents. Results The drug-library screening led to the identification of LY2606368 as a potent anti-CSC agent acting in vitro and in vivo in tumour cells from a considerable number of patients (∼36%). By inhibiting checkpoint kinase (CHK)1, LY2606368 affected DNA replication in most CRC-SCs, including RAS-mutated ones, forcing them into premature, lethal mitoses. Parallel genomic, RPPA and cytogenetic analyses indicated that CRC-SCs sensitive to LY2606368 displayed signs of ongoing RS response, including the phosphorylation of RPA32 and ataxia telangiectasia mutated serine/threonine kinase (ATM). This was associated with mutation(s) in TP53 and hyperdiploidy, and made these CRC-SCs exquisitely dependent on CHK1 function. Accordingly, experimental increase of RS sensitised resistant CRC-SCs to LY2606368. Conclusions LY2606368 selectively eliminates replication-stressed, p53-deficient and hyperdiploid CRC-SCs independently of RAS mutational status. These results provide a strong rationale for biomarker-driven clinical trials with LY2606368 in patients with CRC.
Current Stem Cell Research & Therapy | 2016
Lisette Potze; Simone Di Franco; Jan H. Kessler; Giorgio Stassi; Jan Paul Medema
Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad acting natural compound, shown to induce cell death via the inhibition of the stearoyl-CoA- desaturase (SCD- 1). This enzyme converts saturated fatty acids into unsaturated fatty acids and is over-expressed in tumor cells. Here we show that BetA induces rapid cell death in all colon CSCs tested and is able to affect the CSCs directly as shown, via the loss of clonogenic capacity. Similar results were observed with inhibition of SCD-1, suggesting that SCD-1 activity is indeed a vulnerable link in colon CSCs and can be considered an ideal target for therapy in colon cancer.
Oncotarget | 2016
Simone Di Franco; Alice Turdo; Antonina Benfante; Maria Luisa Colorito; Miriam Gaggianesi; Tiziana Apuzzo; Raju Kandimalla; Aurora Chinnici; Daniela Barcaroli; Laura Rosa Mangiapane; Giuseppe Pistone; Salvatore Vieni; Eliana Gulotta; Francesco Dieli; Jan Paul Medema; Giorgio Stassi; Vincenzo De Laurenzi; Matilde Todaro
P63 is a transcription factor belonging to the family of p53, essential for the development and differentiation of epithelia. In recent years, it has become clear that altered expression of the different isoforms of this gene can play an important role in carcinogenesis. The p63 gene encodes for two main isoforms known as TA and ΔN p63 with different functions. The role of these different isoforms in sustaining tumor progression and metastatic spreading however has not entirely been clarified. Here we show that breast cancer initiating cells express ΔNp63 isoform that supports a more mesenchymal phenotype associated with a higher tumorigenic and metastatic potential. On the contrary, the majority of cells within the tumor appears to express predominantly TAp63 isoform. While ΔNp63 exerts its effects by regulating a PI3K/CD44v6 pathway, TAp63 modulates this pathway in an opposite fashion. As a result, tumorigenicity and invasive capacity of breast cancer cells is a balance of the two isoforms. Finally, we found that tumor microenvironmental cytokines significantly contribute to the establishment of breast cancer cell phenotype by positively regulating ΔNp63 and CD44v6 expression.
Frontiers in Immunology | 2017
Simone Di Franco; Alice Turdo; Matilde Todaro; Giorgio Stassi
Cancer can be considered an aberrant organ with a hierarchical composition of different cell populations. The tumor microenvironment, including the immune cells and related cytokines, is crucial during all the steps of tumor development. In particular, type I and II interferons (IFNs) are involved in a plethora of mechanisms that regulate immune responses in cancer, thus balancing immune escape versus immune surveillance. IFNs are involved in both the direct and indirect regulation of cancer cell proliferation and metastatic potential. The mutational background of genes involved in IFNs signaling could serve as a prognostic biomarker and a powerful tool to screen cancer patients eligible for checkpoint blocking therapies. We herewith describe the latest findings regarding the contribution of IFNs in colorectal cancer and melanoma by researching their dual role as either tumor promoter or suppressor, in diverse tumor types, and microenvironmental context. We are reporting the most innovative and promising approaches of IFN-based therapies that have achieved considerable outcomes in clinical oncology practice and explain the possible mechanisms responsible for their failure.
Cancer Research | 2017
Miriam Gaggianesi; Alice Turdo; Aurora Chinnici; Elisa Lipari; Tiziana Apuzzo; Antonina Benfante; Isabella Sperduti; Simone Di Franco; Serena Meraviglia; Elena Lo Presti; Francesco Dieli; Valentina Caputo; Gabriella Militello; Salvatore Vieni; Giorgio Stassi; Matilde Todaro
The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor-positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4Rα antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24- cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4 by inhibiting NF-κB. Enforced expression of DUSP4 drove conversion of metastatic cells to nonmetastatic cells. Mechanistically, RNAi-mediated attenuation of DUSP4 activated the ERK and p38 MAPK pathways, increased stem-like properties, and spawned metastatic capacity. Targeting IL4 signaling sensitized breast cancer cells to anticancer therapy and strengthened immune responses by enhancing the number of IFNγ-positive CTLs. Our results showed the role of IL4 in promoting breast cancer aggressiveness and how its targeting may improve the efficacy of current therapies. Cancer Res; 77(12); 3268-79. ©2017 AACR.