Simone Mader
Innsbruck Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simone Mader.
Annals of Neurology | 2009
Monika Bradl; Tatsuro Misu; Toshiyuki Takahashi; Mitsutoshi Watanabe; Simone Mader; Markus Reindl; Milena Z. Adzemovic; Jan Bauer; Thomas Berger; Kazuo Fujihara; Yasuto Itoyama; Hans Lassmann
Severe inflammation and astrocyte loss with profound demyelination in spinal cord and optic nerves are typical pathological features of neuromyelitis optica (NMO). A diagnostic hallmark of this disease is the presence of serum autoantibodies against the water channel aquaporin‐4 (AQP‐4) on astrocytes.
Journal of Neuroinflammation | 2011
Simone Mader; Viktoria Gredler; Kathrin Schanda; Kevin Rostasy; Irena Dujmovic; Kristian Pfaller; Andreas Lutterotti; Sven Jarius; Franziska Di Pauli; Bettina Kuenz; Rainer Ehling; Harald Hegen; Florian Deisenhammer; Fahmy Aboul-Enein; Maria K. Storch; Peter Koson; Jelena Drulovic; Wolfgang Kristoferitsch; Thomas Berger; Markus Reindl
BackgroundSerum autoantibodies against the water channel aquaporin-4 (AQP4) are important diagnostic biomarkers and pathogenic factors for neuromyelitis optica (NMO). However, AQP4-IgG are absent in 5-40% of all NMO patients and the target of the autoimmune response in these patients is unknown. Since recent studies indicate that autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) can induce an NMO-like disease in experimental animal models, we speculate that MOG might be an autoantigen in AQP4-IgG seronegative NMO. Although high-titer autoantibodies to human native MOG were mainly detected in a subgroup of pediatric acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) patients, their role in NMO and High-risk NMO (HR-NMO; recurrent optic neuritis-rON or longitudinally extensive transverse myelitis-LETM) remains unresolved.ResultsWe analyzed patients with definite NMO (n = 45), HR-NMO (n = 53), ADEM (n = 33), clinically isolated syndromes presenting with myelitis or optic neuritis (CIS, n = 32), MS (n = 71) and controls (n = 101; 24 other neurological diseases-OND, 27 systemic lupus erythematosus-SLE and 50 healthy subjects) for serum IgG to MOG and AQP4. Furthermore, we investigated whether these antibodies can mediate complement dependent cytotoxicity (CDC). AQP4-IgG was found in patients with NMO (n = 43, 96%), HR-NMO (n = 32, 60%) and in one CIS patient (3%), but was absent in ADEM, MS and controls. High-titer MOG-IgG was found in patients with ADEM (n = 14, 42%), NMO (n = 3, 7%), HR-NMO (n = 7, 13%, 5 rON and 2 LETM), CIS (n = 2, 6%), MS (n = 2, 3%) and controls (n = 3, 3%, two SLE and one OND). Two of the three MOG-IgG positive NMO patients and all seven MOG-IgG positive HR-NMO patients were negative for AQP4-IgG. Thus, MOG-IgG were found in both AQP4-IgG seronegative NMO patients and seven of 21 (33%) AQP4-IgG negative HR-NMO patients. Antibodies to MOG and AQP4 were predominantly of the IgG1 subtype, and were able to mediate CDC at high-titer levels.ConclusionsWe could show for the first time that a subset of AQP4-IgG seronegative patients with NMO and HR-NMO exhibit a MOG-IgG mediated immune response, whereas MOG is not a target antigen in cases with an AQP4-directed humoral immune response.
JAMA Neurology | 2012
Kevin Rostasy; Simone Mader; Kathrin Schanda; Peter Huppke; Jutta Gärtner; Verena Kraus; Michael Karenfort; Daniel Tibussek; Astrid Blaschek; Barbara Bajer-Kornek; Steffen Leitz; Mareike Schimmel; Franziska Di Pauli; Thomas Berger; Markus Reindl
OBJECTIVE To study the humoral immune response directed at myelin oligodendrocyte glycoprotein (MOG)in pediatric patients with isolated and recurrent optic neuritis(ON). DESIGN Observational prospective case series. SETTING Six pediatric hospitals in Germany and Austria. PATIENTS Thirty-seven patients 18 years or younger with single or recurrent episodes of ON were recruited from 6 different hospitals. MAIN OUTCOME MEASURES Clinical features, magnetic resonance imaging findings, intrathecal IgG synthesis,and outcome were recorded. A live cell–based immunofluorescence assay was used to measure serum IgG antibodies to MOG and aquaporin 4. RESULTS A single episode of ON was observed in 10 patients,and 15 experienced 2 to 12 episodes. The acute episode of ON was part of a clinically isolated syndrome in 12 patients, of whom 8 were subsequently classified as having multiple sclerosis. High-titer serum MOG-IgG antibodies (1:160) were detected in 17 patients (46%).In addition, high titers of MOG-IgG antibodies were more frequently observed in 12 of the 15 patients with recurrent episodes of ON (80%; median titer, 1:640)compared with 2 of the 10 patients with monophasic ON(20%; median titer, 0) and 3 of the 12 patients with ON as part of a clinically isolated syndrome (25%; median titer, 0). CONCLUSION High-titer MOG-IgG antibodies are predominantly detected in pediatric patients with recurrent ON, indicating that anti-MOG-specific antibodies may exert a direct role in the pathogenesis of ON in this subgroup.
Clinical Immunology | 2011
Franziska Di Pauli; Simone Mader; Kevin Rostasy; Kathrin Schanda; Barbara Bajer-Kornek; Rainer Ehling; Florian Deisenhammer; Markus Reindl; Thomas Berger
Recent studies demonstrated the presence of autoantibodies to native myelin oligodendrocyte glycoprotein (MOG) in juvenile patients with acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS). However, so far no longitudinal studies on anti-MOG antibodies have been performed. Therefore, we determined serum and CSF antibodies against native human MOG in 266 pediatric and adult subjects with ADEM, clinically isolated syndrome (CIS), MS, other neurological diseases (OND) and healthy controls (HC) and longitudinal samples of 25 patients with ADEM, CIS, MS and OND using an immunofluorescence assay. We detected serum high-titer MOG IgG in 15/34 (44%) patients with ADEM, but only rarely in CIS (3/38, 8%), MS (2/89, 2%), OND (1/58, 2%) and HC (0/47). Longitudinal analysis of serum anti-MOG IgG showed different temporal dynamics of serum antibody responses in ADEM, CIS and MS and indicated an association of a favorable clinical outcome in ADEM with a decrease in antibody titers over time.
Multiple Sclerosis Journal | 2013
Kevin Rostasy; Simone Mader; Eva Maria Hennes; Kathrin Schanda; V Gredler; A Guenther; A Blaschek; C Korenke; Martin Pritsch; Daniela Pohl; O Maier; Giorgi Kuchukhidze; M Brunner-Krainz; Thomas Berger; Markus Reindl
Background: Recently we showed that antibodies to myelin oligodendrocyte glycoprotein (MOG) can be found in aquaporin-4 (AQP4)-immunoglobulin (IgG) seronegative pediatric and adult patients with definite and high-risk neuromyelitis optica (NMO). Objective: The purpose of this study was to describe the clinical characteristics and temporal dynamics of MOG-IgG in AQP4-IgG seronegative pediatric patients presenting with definite NMO. Methods: Children with definite NMO who were referred for further testing of serum antibodies for AQP4 and MOG with a cell-based assay were included in this study. Clinical disease course, cerebrospinal fluid and magnetic resonance imaging (MRI) studies of these patients were reviewed. Results: Between 2008 and 2012 eight children who fulfilled the diagnostic criteria of definite NMO were recruited. Two children with definite NMO tested positive for AQP4-IgG but were negative for MOG-IgG antibodies. Three children had an absence of AQP4-IgG and MOG-IgG antibodies. Three children with definite NMO had high titers of serum MOG-IgG antibodies (≥1: 160), but no AQP4-directed humoral immune response. Longitudinal analysis of serum samples of the latter three children showed persisting high MOG-IgG titers over time. Conclusion: Pediatric patients presenting with clinical symptoms and MRI findings highly suggestive of NMO but with high and persisting MOG-IgG antibody titers are most likely to represent a distinct subgroup of acute demyelinating diseases with important clinical and therapeutic implications.
Multiple Sclerosis Journal | 2011
Sven Jarius; Christian Jacobi; Jérôme De Seze; Hélène Zéphir; Friedemann Paul; Diego Franciotta; Paulus S. Rommer; Simone Mader; Ingo Kleiter; Markus Reindl; Gulsen Akman-Demir; Thomas Seifert-Held; Wolfgang Kristoferitsch; Arthur Melms; Klaus Peter Wandinger; Brigitte Wildemann
Background: A new autoantibody (termed NMO-IgG, or AQP4-Ab) has recently been described in patients with neuromyelitis optica (NMO) and its formes frustes, longitudinally extensive transverse myelitis (LETM) and recurrent optic neuritis (rON). However, AQP4-Ab has been found also in patients with co-existing rheumatic diseases such as systemic lupus erythematosus (SLE) or Sjögren’s syndrome (SS), conditions which are characterized by broad, polyspecific B cell activation. Objectives: In this study, we aimed at evaluating the syndrome specificity and frequency of AQP4-Ab in patients with rheumatic diseases and neurological symptoms. Methods: For this purpose, serum samples from 109 neurological patients with established connective tissue disorders (CTD) (n = 54), possible CTD (n = 42), or vasculitis (n = 13) were analysed for the presence of AQP4-Ab by a cell-based assay employing recombinant human AQP4. Results: AQP4-Ab was detectable in 31/40 (78%) patients with CTD and NMO spectrum disorders (median titre, 1:1000) but in none of the samples obtained from patients with CTD or vasculitis and neurological disorders other than NMO, LETM, or rON (n = 69). Conclusion: The high syndrome specificity of the antibody for neuromyelitis optica spectrum disorders (NMOSDs) in patients with CTD supports the concept of AQP4-Ab being involved in the pathogenesis of these neurological conditions, and argues against AQP4-Ab simply being part of the polyclonal B cell activation generally associated with rheumatic diseases. Moreover, the finding that AQP4-Ab is present in patients with CTD and co-existing NMOSD with approximately the same frequency as in patients without CTD strengthens the case of CTD and AQP4-Ab positive NMOSD representing two co-existing yet distinct entities in the majority of patients.
PLOS ONE | 2010
Simone Mader; Andreas Lutterotti; Franziska Di Pauli; Bettina Kuenz; Kathrin Schanda; Fahmy Aboul-Enein; Michael Khalil; Maria K. Storch; Sven Jarius; Wolfgang Kristoferitsch; Thomas Berger; Markus Reindl
Background Neuromyelitis optica (NMO), a severe demyelinating disease, represents itself with optic neuritis and longitudinally extensive transverse myelitis. Serum NMO-IgG autoantibodies (Abs), a specific finding in NMO patients, target the water channel protein aquaporin-4 (AQP4), which is expressed as a long (M-1) or a short (M-23) isoform. Methodology/Principal Findings The aim of this study was to analyze serum samples from patients with NMO and controls for the presence and epitope specificity of IgG and IgM anti-AQP4 Abs using an immunofluorescence assay with HEK293 cells expressing M-1 or M-23 human AQP4. We included 56 patients with definite NMO (n = 30) and high risk NMO (n = 26), 101 patients with multiple sclerosis, 27 patients with clinically isolated syndromes (CIS), 30 patients with systemic lupus erythematosus (SLE) or Sjögrens syndrome, 29 patients with other neurological diseases and 47 healthy controls. Serum anti-AQP4 M-23 IgG Abs were specifically detected in 29 NMO patients, 17 patients with high risk NMO and two patients with myelitis due to demyelination (CIS) and SLE. In contrast, IgM anti-AQP4 Abs were not only found in some NMO and high risk patients, but also in controls. The sensitivity of the M-23 AQP4 IgG assay was 97% for NMO and 65% for high risk NMO, with a specificity of 100% compared to the controls. Sensitivity with M-1 AQP4 transfected cells was lower for NMO (70%) and high risk NMO (39%). The conformational epitopes of M-23 AQP4 are the primary targets of NMO-IgG Abs, whereas M-1 AQP4 Abs are developed with increasing disease duration and number of relapses. Conclusions Our results confirm M-23 AQP4-IgG Abs as reliable biomarkers in patients with NMO and high risk syndromes. M-1 and M-23 AQP4-IgG Abs are significantly associated with a higher number of relapses and longer disease duration.
Acta Neuropathologica | 2011
Maria Pohl; Marie-Therese Fischer; Simone Mader; Kathrin Schanda; Maja Kitic; Rakhi Sharma; Isabella Wimmer; Tatsuro Misu; Kazuo Fujihara; Markus Reindl; Hans Lassmann; Monika Bradl
Inflammatory lesions in the central nervous system of patients with neuromyelitis optica are characterized by infiltration of T cells and deposition of aquaporin-4-specific antibodies and complement on astrocytes at the glia limitans. Although the contribution of aquaporin-4-specific autoantibodies to the disease process has been recently elucidated, a potential role of aquaporin-4-specific T cells in lesion formation is unresolved. To address this issue, we raised aquaporin-4-specific T cell lines in Lewis rats and characterized their pathogenic potential in the presence and absence of aquaporin-4-specific autoantibodies of neuromyelitis optica patients. We show that aquaporin-4-specific T cells induce brain inflammation with particular targeting of the astrocytic glia limitans and permit the entry of pathogenic anti-aquaporin-4-specific antibodies to induce NMO-like lesions in spinal cord and brain. In addition, transfer of aquaporin-4-specific T cells provoked mild (subclinical) myositis and interstitial nephritis. We further show that the expression of the conformational epitope, recognized by NMO patient-derived aquaporin-4-specific antibodies is induced in kidney cells by the pro-inflammatory cytokine gamma-interferon. Our data provide further support for the view that NMO lesions may be induced by a complex interplay of T cell mediated and humoral immune responses against aquaporin-4.
Acta neuropathologica communications | 2013
Maria Pohl; Naoto Kawakami; Maja Kitic; Jan Bauer; Rui Martins; Marie-Therese Fischer; Joana Machado-Santos; Simone Mader; Joachim W. Ellwart; Tatsuro Misu; Kazuo Fujihara; Hartmut Wekerle; Markus Reindl; Hans Lassmann; Monika Bradl
BackgroundNeuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system (CNS), which is characterized by the presence of pathogenic serum autoantibodies against aquaporin 4 (AQP4) in the vast majority of patients. The contribution of T cells to the formation of astrocyte destructive lesions is currently unclear. However, active human NMO lesions contain CD4+ T-lymphocytes expressing the activation marker Ox40, and the expression is more profound compared to that seen in MS lesions of comparable activity. Therefore, we analyzed the role of T-cell activation within the CNS in the initiation of NMO lesions in an experimental model of co-transfer of different encephalitogenic T-cells and human AQP4 antibody containing NMO immunoglobulin (NMO IgG). We further studied the expression of the T-cell activation marker Ox40 in NMO and multiple sclerosis lesions in different stages of activity.ResultsAll encephalitogenic T-cell lines used in our experiments induced brain inflammation with a comparable extent of blood brain barrier damage, allowing human NMO IgG to penetrate into the brain and spinal cord tissue. However, astrocyte destructive NMO lesions were only seen with T-cells, which showed signs of activation in the lesions. T-cell activation was reflected by the expression of the activation marker Ox40 and pronounced production of γ-IFN, which was able to increase the production of complement proteins and of the Fc gamma III receptor (Fcgr3) and decreased production of complement inhibitory protein Factor H in microglia.ConclusionsOur data indicate that local activation of T-cells provide an inflammatory environment in the CNS, which allows AQP4 auto-antibodies to induce astrocyte destructive NMO-like lesions.
Acta neuropathologica communications | 2013
Maja Kitic; Sonja Hochmeister; Isabella Wimmer; Jan Bauer; Tatsuro Misu; Simone Mader; Markus Reindl; Kazuo Fujihara; Hans Lassmann; Monika Bradl
BackgroundNeuromyelitis optica (NMO) is a severe, disabling disease of the central nervous system (CNS) characterized by the formation of astrocyte-destructive, neutrophil-dominated inflammatory lesions in the spinal cord and optic nerves. These lesions are initiated by the binding of pathogenic aquaporin 4 (AQP4)-specific autoantibodies to astrocytes and subsequent complement-mediated lysis of these cells. Typically, these lesions form in a setting of CNS inflammation, where the blood–brain barrier is open for the entry of antibodies and complement. However, it remained unclear to which extent pro-inflammatory cytokines and chemokines contribute to the formation of NMO lesions. To specifically address this question, we injected the cytokines interleukin-1 beta, tumor necrosis factor alpha, interleukin-6, interferon gamma and the chemokine CXCL2 into the striatum of NMO-IgG seropositive rats and analyzed the tissue 24 hours later by immunohistochemistry.ResultsAll injected cytokines and chemokines led to profound leakage of immunoglobulins into the injected hemisphere, but only interleukin-1 beta induced the formation of perivascular, neutrophil-infiltrated lesions with AQP4 loss and complement-mediated astrocyte destruction distant from the needle tract. Treatment of rat brain endothelial cells with interleukin-1 beta, but not with any other cytokine or chemokine applied at the same concentration and over the same period of time, caused profound upregulation of granulocyte-recruiting and supporting molecules. Injection of interleukin-1 beta caused higher numbers of blood vessels with perivascular, cellular C1q reactivity than any other cytokine tested. Finally, the screening of a large sample of CNS lesions from NMO and multiple sclerosis patients revealed large numbers of interleukin-1 beta-reactive macrophages/activated microglial cells in active NMO lesions but not in MS lesions with comparable lesion activity and location.ConclusionsOur data strongly suggest that interleukin-1 beta released in NMO lesions and interleukin-1 beta-induced production/accumulation of complement factors (like C1q) facilitate neutrophil entry and BBB breakdown in the vicinity of NMO lesions, and might thus be an important secondary factor for lesion formation, possibly by paving the ground for rapid lesion growth and amplified immune cell recruitment to this site.