Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Santos Silva is active.

Publication


Featured researches published by Simone Santos Silva.


Journal of the Royal Society Interface | 2007

Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends

João F. Mano; Gabriel A. Silva; Helena S. Azevedo; Patrícia B. Malafaya; Rui A. Sousa; Simone Santos Silva; Luciano F. Boesel; Joaquim M. Oliveira; T. C. Santos; Alexandra P. Marques; Nuno M. Neves; Rui L. Reis

The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.


Macromolecular Bioscience | 2008

Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies

Simone Santos Silva; Sandra M. Luna; Manuela E. Gomes; Johan Benesch; Iva Pashkuleva; João F. Mano; Rui L. Reis

Surface modification of biomaterials is a way to tailor cell responses whilst retaining the bulk properties. In this work, chitosan membranes were prepared by solvent casting and treated with nitrogen or argon plasma at 20 W for 10-40 min. AFM indicated an increase in the surface roughness as a result of the ongoing etching process. XPS and contact angle measurements showed different surface elemental compositions and higher surface free energy. The MTS test and direct contact assays with an L929 fibroblast cell line indicated that the plasma treatment improved the cell adhesion and proliferation. Overall, the results demonstrated that such plasma treatments could significantly improve the biocompatibility of chitosan membranes and thus improve their potential in wound dressings and tissue engineering applications.


International Materials Reviews | 2012

Materials of marine origin: a review on polymers and ceramics of biomedical interest

Tiago H. Silva; Anabela Alves; B. M. Ferreira; Joaquim M. Oliveira; L. L. Reys; R. J. F. Ferreira; Rui A. Sousa; Simone Santos Silva; João F. Mano; Rui L. Reis

Abstract Marine organisms are constituted by materials with a vast range of properties and characteristics that may justify their potential application within the biomedical field. Moreover, assuring the sustainable exploitation of natural marine resources, the valorisation of residues from marine origin, like those obtained from food processing, constitutes a highly interesting platform for development of novel biomaterials, with both economic and environmental benefits. In this perspective, an increasing number of different types of compounds are being isolated from aquatic organisms and transformed into profitable products for health applications, including controlled drug delivery and tissue engineering devices. This report reviews the work that is being developed on the isolation and characterisation of some polysaccharides, proteins, glycosaminoglycans and ceramics from marine raw materials. Emphasis is given to agar, alginates, carrageenans, chitin and chitosan, among other polysaccharides, collagen, glycosaminoglycans such as chondroitin sulphate, heparin and hyaluronic acid, calcium phosphorous compounds and biosilica. Finally, this report ends by reviewing the application of the previously mentioned materials on specific biomedical applications, in particular their participation on the development of controlled drug delivery systems and tissue engineering scaffolds.


Critical Reviews in Biotechnology | 2010

Potential applications of natural origin polymer-based systems in soft tissue regeneration

Simone Santos Silva; João F. Mano; Rui L. Reis

Despite the many advances in tissue engineering approaches, scientists still face significant challenges in trying to repair and replace soft tissues. Nature-inspired routes involving the creation of polymer-based systems of natural origins constitute an interesting alternative route to produce novel materials. The interest in these materials comes from the possibility of constructing multi-component systems that can be manipulated by composition allowing one to mimic the tissue environment required for the cellular regeneration of soft tissues. For this purpose, factors such as the design, choice, and compatibility of the polymers are considered to be key factors for successful strategies in soft tissue regeneration. More recently, polysaccharide-protein based systems have being increasingly studied and proposed for the treatment of soft tissues. The characteristics, properties, and compatibility of the resulting materials investigated in the last 10 years, as well as commercially available matrices or those currently under investigation are the subject matter of this review.


Acta Biomaterialia | 2011

Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology

Simone Santos Silva; Ana Rita C. Duarte; Ana P. Carvalho; João F. Mano; Rui L. Reis

The application of green chemistry principles in the processing of materials for advanced technologies is a steadily increasing field of research. In this work porous chitin-based materials were developed by combining the processing of chitin using ionic liquids (ILs) as a green solvent together with the use of supercritical fluid technology (SCF) as clean technology. Chitin was dissolved in 1-butyl-3-imidazolium acetate, followed by regeneration of the polymer in ethanol in specific moulds. The IL was removed using Soxhlet extraction and successive steps of extraction with SCF using carbon dioxide/ethanol ratios of 50/50 and 70/30. The developed porous chitin-based structures (ChIL) can be classified as mesoporous materials, with very low density and high porosity. The cytotoxicity of ChIL extracts was investigated using L929 fibroblast-like cells, and the results demonstrated that the produced materials have extremely low cytotoxicity levels. Therefore, the findings suggest that the porous chitin structures may be potential candidates for a number of biomedical applications, including tissue engineering.


Biomatter | 2012

Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches.

Tiago H. Silva; Anabela Alves; Elena Geta Popa; L. L. Reys; Manuela E. Gomes; Rui A. Sousa; Simone Santos Silva; João F. Mano; Rui L. Reis

Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches.


Macromolecular Bioscience | 2008

Genipin-Modified Silk-Fibroin Nanometric Nets

Simone Santos Silva; Devid Maniglio; Antonella Motta; João F. Mano; Rui L. Reis; Claudio Migliaresi

Nanometric silk-fibroin nets were fabricated by electrospinning from regenerated Bombyx mori silk-fibroin (SF)/formic acid solutions with the addition of genipin (GE), 2, 15 and 24 h after the solution preparation. After spinning, the pure fibroin nanofibers were water soluble and needed a further stabilization process, whereas the reaction of fibroin with genipin resulted in water-insoluble fibroin nets due to conformational changes induced in the fibroin by the genipin. SFGE nanofibers presented diameters ranging from 140 to 590 nm and were generally thinner than pure SF nanofibers. The secondary structure of SF into SFGE nanofibers showed the presence of a beta-sheet conformation together with beta-turn intermediates (turns and bends). The approach described in this paper provides an alternative method of designing SF nanofibers that are already water insoluble, without any stability post-treatment needed.


Acta Biomaterialia | 2013

An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine

Simone Santos Silva; Elena Geta Popa; Manuela E. Gomes; M. T. Cerqueira; Alexandra P. Marques; Sofia G. Caridade; Pilar Teixeira; Cláudia Sousa; João F. Mano; Rui L. Reis

A significant number of therapeutics derived from natural polymers and plants have been developed to replace or to be used in conjunction with existing dressing products. The use of the therapeutic properties of aloe vera could be very useful in the creation of active wound dressing materials. The present work was undertaken to examine issues concerning structural features, topography, enzymatic degradation behavior, antibacterial activity and cellular response of chitosan/aloe vera-based membranes. The chitosan/aloe vera-based membranes that were developed displayed satisfactory degradation, roughness, wettability and mechanical properties. A higher antibacterial potency was displayed by the blended membranes. Moreover, in vitro assays demonstrated that these blended membranes have good cell compatibility with primary human dermal fibroblasts. The chitosan/aloe vera-based membranes might be promising wound dressing materials.


Journal of Biomaterials Applications | 2011

Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification

Sandra M. Luna; Simone Santos Silva; Manuela E. Gomes; João F. Mano; Rui L. Reis

Surface properties play a vital role in the functioning of a biomaterial. Cellular adherence and growth onto biomaterials can be enhanced in biomaterial modifications of their surface. In this work, the cell behavior on chitosan membranes modified by argon and nitrogen-plasma treatments was investigated. Characterization of the membranes was performed using atomic force microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Cytotoxicity assessment and direct contact assay were carried out for untreated and treated chitosan membranes using L929 fibroblast-like cells. Cell morphology and cell viability were assessed to evaluate the cell attachment and proliferation. Changes in terms of roughness, surface chemistry, and hydrophilicity/hydrophobic balance of chitosan-modified membranes were observed. Regarding cell studies, the findings revealed that the extracts of all membranes do not induce cytotoxic effects. Moreover, the in vitro assays evidenced an improvement of the L929 adhesion and attachment when compared to untreated chitosan membranes. Overall, the data obtained clearly demonstrated that plasma treatments constitute an effective way of improving the biocompatibility of chitosan membranes towards to their use in biomedical applications.


Carbohydrate Polymers | 2013

Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications

Simone Santos Silva; Sofia G. Caridade; João F. Mano; Rui L. Reis

The positive interaction between polysaccharides with active phytochemicals found in medicinal plants may represent a strategy to create active wound dressing materials useful for skin repair. In the present work, blended membranes composed of chitosan (Cht) and aloe vera gel were prepared through the solvent casting, and were crosslinked with genipin to improve their properties. Topography, swelling, wettability, mechanical properties and in vitro cellular response of the membranes were investigated. With the incorporation of aloe vera gel into chitosan solution, the developed chitosan/aloe-based membranes displayed increased roughness and wettability; while the genipin crosslinking promoted the formation of stiffer membranes in comparison to those of the non-modified membranes. Moreover, in vitro cell culture studies evidenced that the L929 cells have high cell viability, confirmed by MTS test and calcein-AM staining. The findings suggested that both blend compositions and crosslinking affected the physico-chemical properties and cellular behavior of the developed membranes.

Collaboration


Dive into the Simone Santos Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge