Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone Weyand is active.

Publication


Featured researches published by Simone Weyand.


Nature | 2011

Structure of the human histamine H1 receptor complex with doxepin.

Tatsuro Shimamura; Mitsunori Shiroishi; Simone Weyand; Hirokazu Tsujimoto; Graeme Winter; Vsevolod Katritch; Ruben Abagyan; Vadim Cherezov; Wei Liu; Gye Won Han; Takuya Kobayashi; Raymond C. Stevens; So Iwata

The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H1 receptor (H1R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H1R complex with doxepin, a first-generation H1R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp 4286.48, a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H1R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys 1915.39 and/or Lys 179ECL2, both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H1R antagonist specificity against H1R.


Science | 2008

Structure and molecular mechanism of a nucleobase-cation- symport-1 family transporter

Simone Weyand; Tatsuro Shimamura; Shunsuke Yajima; Shunichi Suzuki; Osman Mirza; Kuakarun Krusong; Elisabeth P. Carpenter; Nicholas G. Rutherford; Jonathan M. Hadden; John O'Reilly; Pikyee Ma; Massoud Saidijam; Simon G. Patching; Ryan J. Hope; Halina Norbertczak; Peter Roach; So Iwata; Peter J. F. Henderson; Alexander D. Cameron

The nucleobase–cation–symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuTAa and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.


Science | 2010

Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1

Tatsuro Shimamura; Simone Weyand; Oliver Beckstein; Nicholas G. Rutherford; Jonathan M. Hadden; David Sharples; Mark S.P. Sansom; So Iwata; Peter J. F. Henderson; Alexander D. Cameron

Triangulating to Mechanism Cellular uptake and release of a variety of substrates are mediated by secondary transporters, but no crystal structures are known for all three fundamental states of the transport cycle, which has limited explanations for their proposed mechanisms. Shimamura et al. (p. 470) report a 3.8-angstrom structure of the inward-facing conformation of the bacterial sodium-benzylhydantoin transport protein, Mhp1, complementing the other two available structures. Molecular modeling for the interconversions of these structures shows a simple rigid body rotation of four helices relative to the rest of the structure in which the protein switches reversibly from outward- to inward-facing. Three complementary crystal structures reveal the mechanism of a transport protein in molecular dynamics simulations. The structure of the sodium-benzylhydantoin transport protein Mhp1 from Microbacterium liquefaciens comprises a five-helix inverted repeat, which is widespread among secondary transporters. Here, we report the crystal structure of an inward-facing conformation of Mhp1 at 3.8 angstroms resolution, complementing its previously described structures in outward-facing and occluded states. From analyses of the three structures and molecular dynamics simulations, we propose a mechanism for the transport cycle in Mhp1. Switching from the outward- to the inward-facing state, to effect the inward release of sodium and benzylhydantoin, is primarily achieved by a rigid body movement of transmembrane helices 3, 4, 8, and 9 relative to the rest of the protein. This forms the basis of an alternating access mechanism applicable to many transporters of this emerging superfamily.


Nature | 2012

G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody

Tomoya Hino; Takatoshi Arakawa; Hiroko Iwanari; Takami Yurugi-Kobayashi; Chiyo Ikeda-Suno; Yoshiko Nakada-Nakura; Osamu Kusano-Arai; Simone Weyand; Tatsuro Shimamura; Norimichi Nomura; Alexander D. Cameron; Takuya Kobayashi; Takao Hamakubo; So Iwata; Takeshi Murata

G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A2A adenosine receptor (A2AAR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A2AAR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A2AAR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A2AAR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active β2-adrenergic receptor structure, but locks A2AAR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.


Journal of Molecular Biology | 2011

Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans.

Keisuke Ito; Sohei Ito; Tatsuro Shimamura; Simone Weyand; Yasuaki Kawarasaki; Takumi Misaka; Keiko Abe; Takuya Kobayashi; Alexander D. Cameron; So Iwata

Glucansucrase (GSase) from Streptococcus mutans is an essential agent in dental caries pathogenesis. Here, we report the crystal structure of S. mutans glycosyltransferase (GTF-SI), which synthesizes soluble and insoluble glucans and is a glycoside hydrolase (GH) family 70 GSase in the free enzyme form and in complex with acarbose and maltose. Resolution of the GTF-SI structure confirmed that the domain order of GTF-SI is circularly permuted as compared to that of GH family 13 α-amylases. As a result, domains A, B and IV of GTF-SI are each composed of two separate polypeptide chains. Structural comparison of GTF-SI and amylosucrase, which is closely related to GH family 13 amylases, indicated that the two enzymes share a similar transglycosylation mechanism via a glycosyl-enzyme intermediate in subsite -1. On the other hand, novel structural features were revealed in subsites +1 and +2 of GTF-SI. Trp517 provided the platform for glycosyl acceptor binding, while Tyr430, Asn481 and Ser589, which are conserved in family 70 enzymes but not in family 13 enzymes, comprised subsite +1. Based on the structure of GTF-SI and amino acid comparison of GTF-SI, GTF-I and GTF-S, Asp593 in GTF-SI appeared to be the most critical point for acceptor sugar orientation, influencing the transglycosylation specificity of GSases, that is, whether they produced insoluble glucan with α(1-3) glycosidic linkages or soluble glucan with α(1-6) linkages. The structural information derived from the current study should be extremely useful in the design of novel inhibitors that prevent the biofilm formation by GTF-SI.


Journal of Synchrotron Radiation | 2011

The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1

Simone Weyand; Tatsuro Shimamura; Oliver Beckstein; Mark S.P. Sansom; So Iwata; Peter J. F. Henderson; Alexander D. Cameron

Crystal structures of a membrane protein transporter in three different conformational states provide insights into the transport mechanism.


The EMBO Journal | 2014

Molecular mechanism of ligand recognition by membrane transport protein, Mhp1

Katie J. Simmons; Scott M. Jackson; Florian Brueckner; Simon G. Patching; Oliver Beckstein; Ekaterina Ivanova; Tian Geng; Simone Weyand; David Drew; Joseph Lanigan; David Sharples; Mark S.P. Sansom; So Iwata; Colin W. G. Fishwick; A. Peter Johnson; Alexander D. Cameron; Peter J. F. Henderson

The hydantoin transporter Mhp1 is a sodium‐coupled secondary active transport protein of the nucleobase‐cation‐symport family and a member of the widespread 5‐helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site‐directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5‐substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5‐substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5‐(2‐naphthylmethyl)‐L‐hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1.


Science | 2010

Old Gate Gets a New Look

Simone Weyand; So Iwata

A proposed structure for a protein that enables potassium ions to move in and out of cells raises new questions about how its “gate” works. Cells are constantly exchanging water-soluble molecules like nutrients and inorganic ions with their environment. The movement of these molecules across the cells plasma membrane is mediated by various transport proteins that create pores through the membranes lipid bilayer. One type of transport protein, an ion channel, is responsible for transporting certain ions, such as potassium, calcium, or sodium. Ion channels have filters that make the channel permeable only to a specific kind of ion and gates that regulate the flow of ions through the channel. Gates can be controlled by chemical and/or electrical signals, including those created by differences in the voltage inside and outside the cell (membrane potential), and the concentrations of binding molecules (ligands). On page 182, Yuan et al. offer new insights into the structure of an important potassium ion channel and the cues that cause its gate to open and close (1).


Journal of Structural and Functional Genomics | 2009

The three-dimensional structure of diaminopimelate decarboxylase from Mycobacterium tuberculosis reveals a tetrameric enzyme organisation

Simone Weyand; Georgia Kefala; Dmitri I. Svergun; Manfred S. Weiss


Encyclopedia of Inorganic and Bioinorganic Chemistry | 2010

The Nucleobase-Cation-Symport-1 Family of Membrane Transport Proteins

Simone Weyand; Pikyee Ma; Massoud Saidijam; Jocelyn M. Baldwin; Oliver Beckstein; Scott M. Jackson; Shunichi Suzuki; Simon G. Patching; Tatsuro Shimamura; Mark S.P. Sansom; So Iwata; Alexander D. Cameron; Stephen A. Baldwin; Peter J. F. Henderson

Collaboration


Dive into the Simone Weyand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge