Tatsuro Shimamura
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tatsuro Shimamura.
Nature | 2011
Tatsuro Shimamura; Mitsunori Shiroishi; Simone Weyand; Hirokazu Tsujimoto; Graeme Winter; Vsevolod Katritch; Ruben Abagyan; Vadim Cherezov; Wei Liu; Gye Won Han; Takuya Kobayashi; Raymond C. Stevens; So Iwata
The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H1 receptor (H1R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H1R complex with doxepin, a first-generation H1R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp 4286.48, a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H1R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys 1915.39 and/or Lys 179ECL2, both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H1R antagonist specificity against H1R.
Science | 2008
Simone Weyand; Tatsuro Shimamura; Shunsuke Yajima; Shunichi Suzuki; Osman Mirza; Kuakarun Krusong; Elisabeth P. Carpenter; Nicholas G. Rutherford; Jonathan M. Hadden; John O'Reilly; Pikyee Ma; Massoud Saidijam; Simon G. Patching; Ryan J. Hope; Halina Norbertczak; Peter Roach; So Iwata; Peter J. F. Henderson; Alexander D. Cameron
The nucleobase–cation–symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuTAa and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.
Science | 2010
Tatsuro Shimamura; Simone Weyand; Oliver Beckstein; Nicholas G. Rutherford; Jonathan M. Hadden; David Sharples; Mark S.P. Sansom; So Iwata; Peter J. F. Henderson; Alexander D. Cameron
Triangulating to Mechanism Cellular uptake and release of a variety of substrates are mediated by secondary transporters, but no crystal structures are known for all three fundamental states of the transport cycle, which has limited explanations for their proposed mechanisms. Shimamura et al. (p. 470) report a 3.8-angstrom structure of the inward-facing conformation of the bacterial sodium-benzylhydantoin transport protein, Mhp1, complementing the other two available structures. Molecular modeling for the interconversions of these structures shows a simple rigid body rotation of four helices relative to the rest of the structure in which the protein switches reversibly from outward- to inward-facing. Three complementary crystal structures reveal the mechanism of a transport protein in molecular dynamics simulations. The structure of the sodium-benzylhydantoin transport protein Mhp1 from Microbacterium liquefaciens comprises a five-helix inverted repeat, which is widespread among secondary transporters. Here, we report the crystal structure of an inward-facing conformation of Mhp1 at 3.8 angstroms resolution, complementing its previously described structures in outward-facing and occluded states. From analyses of the three structures and molecular dynamics simulations, we propose a mechanism for the transport cycle in Mhp1. Switching from the outward- to the inward-facing state, to effect the inward release of sodium and benzylhydantoin, is primarily achieved by a rigid body movement of transmembrane helices 3, 4, 8, and 9 relative to the rest of the protein. This forms the basis of an alternating access mechanism applicable to many transporters of this emerging superfamily.
Nature | 2012
Tomoya Hino; Takatoshi Arakawa; Hiroko Iwanari; Takami Yurugi-Kobayashi; Chiyo Ikeda-Suno; Yoshiko Nakada-Nakura; Osamu Kusano-Arai; Simone Weyand; Tatsuro Shimamura; Norimichi Nomura; Alexander D. Cameron; Takuya Kobayashi; Takao Hamakubo; So Iwata; Takeshi Murata
G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A2A adenosine receptor (A2AAR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A2AAR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A2AAR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A2AAR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active β2-adrenergic receptor structure, but locks A2AAR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.
Journal of Medicinal Chemistry | 2011
Chris de Graaf; Albert J. Kooistra; Henry F. Vischer; Vsevolod Katritch; Martien Kuijer; Mitsunori Shiroishi; So Iwata; Tatsuro Shimamura; Raymond C. Stevens; Iwan J. P. de Esch; Rob Leurs
The recent crystal structure determinations of druggable class A G protein-coupled receptors (GPCRs) have opened up excellent opportunities in structure-based ligand discovery for this pharmaceutically important protein family. We have developed and validated a customized structure-based virtual fragment screening protocol against the recently determined human histamine H(1) receptor (H(1)R) crystal structure. The method combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. The optimized in silico screening approach was successfully applied to identify a chemically diverse set of novel fragment-like (≤22 heavy atoms) H(1)R ligands with an exceptionally high hit rate of 73%. Of the 26 tested fragments, 19 compounds had affinities ranging from 10 μM to 6 nM. The current study shows the potential of in silico screening against GPCR crystal structures to explore novel, fragment-like GPCR ligand space.
Nature | 2007
Hideo Ago; Yoshihide Kanaoka; Daisuke Irikura; Bing K. Lam; Tatsuro Shimamura; K. Frank Austen; Masashi Miyano
The cysteinyl leukotrienes, namely leukotriene (LT)C4 and its metabolites LTD4 and LTE4, the components of slow-reacting substance of anaphylaxis, are lipid mediators of smooth muscle constriction and inflammation, particularly implicated in bronchial asthma. LTC4 synthase (LTC4S), the pivotal enzyme for the biosynthesis of LTC4 (ref. 10), is an 18-kDa integral nuclear membrane protein that belongs to a superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism that includes 5-lipoxygenase-activating protein, microsomal glutathione S-transferases (MGSTs), and microsomal prostaglandin E synthase 1 (ref. 13). LTC4S conjugates glutathione to LTA4, the endogenous substrate derived from arachidonic acid through the 5-lipoxygenase pathway. In contrast with MGST2 and MGST3 (refs 15, 16), LTC4S does not conjugate glutathione to xenobiotics. Here we show the atomic structure of human LTC4S in a complex with glutathione at 3.3 Å resolution by X-ray crystallography and provide insights into the high substrate specificity for glutathione and LTA4 that distinguishes LTC4S from other MGSTs. The LTC4S monomer has four transmembrane α-helices and forms a threefold symmetric trimer as a unit with functional domains across each interface. Glutathione resides in a U-shaped conformation within an interface between adjacent monomers, and this binding is stabilized by a loop structure at the top of the interface. LTA4 would fit into the interface so that Arg 104 of one monomer activates glutathione to provide the thiolate anion that attacks C6 of LTA4 to form a thioether bond, and Arg 31 in the neighbouring monomer donates a proton to form a hydroxyl group at C5, resulting in 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTC4). These findings provide a structural basis for the development of LTC4S inhibitors for a proinflammatory pathway mediated by three cysteinyl leukotriene ligands whose stability and potency are different and by multiple cysteinyl leukotriene receptors whose functions may be non-redundant.
Journal of Biological Chemistry | 2008
Tatsuro Shimamura; Kenji Hiraki; Naoko Takahashi; Tetsuya Hori; Hideo Ago; Katsuyoshi Masuda; Koji Takio; Masaji Ishiguro; Masashi Miyano
G-protein-coupled receptors play a key step in cellular signal transduction cascades by transducing various extracellular signals via G-proteins. Rhodopsin is a prototypical G-protein-coupled receptor involved in the retinal visual signaling cascade. We determined the structure of squid rhodopsin at 3.7Å resolution, which transduces signals through the Gq protein to the phosphoinositol cascade. The structure showed seven transmembrane helices and an amphipathic helix H8 has similar geometry to structures from bovine rhodopsin, coupling to Gt, and humanβ2-adrenergic receptor, coupling to Gs. Notably, squid rhodopsin contains a well structured cytoplasmic region involved in the interaction with G-proteins, and this region is flexible or disordered in bovine rhodopsin and humanβ2-adrenergic receptor. The transmembrane helices 5 and 6 are longer and extrude into the cytoplasm. The distal C-terminal tail contains a short hydrophilic α-helix CH after the palmitoylated cysteine residues. The residues in the distal C-terminal tail interact with the neighboring residues in the second cytoplasmic loop, the extruded transmembrane helices 5 and 6, and the short helix H8. Additionally, the Tyr-111, Asn-87, and Asn-185 residues are located within hydrogen-bonding distances from the nitrogen atom of the Schiff base.
Nature Structural & Molecular Biology | 2008
Mika Jormakka; Ken Yokoyama; Takahiro Yano; Masatada Tamakoshi; Satoru Akimoto; Tatsuro Shimamura; Paul M. G. Curmi; So Iwata
Bacterial polysulfide reductase (PsrABC) is an integral membrane protein complex responsible for quinone-coupled reduction of polysulfide, a process important in extreme environments such as deep-sea vents and hot springs. We determined the structure of polysulfide reductase from Thermus thermophilus at 2.4-Å resolution, revealing how the PsrA subunit recognizes and reduces its unique polyanionic substrate. The integral membrane subunit PsrC was characterized using the natural substrate menaquinone-7 and inhibitors, providing a comprehensive representation of a quinone binding site and revealing the presence of a water-filled cavity connecting the quinone binding site on the periplasmic side to the cytoplasm. These results suggest that polysulfide reductase could be a key energy-conserving enzyme of the T. thermophilus respiratory chain, using polysulfide as the terminal electron acceptor and pumping protons across the membrane via a previously unknown mechanism.
Nature Methods | 2015
Michihiro Sugahara; Eiichi Mizohata; Eriko Nango; Mamoru Suzuki; Tomoyuki Tanaka; Tetsuya Masuda; Rie Tanaka; Tatsuro Shimamura; Yoshiki Tanaka; Chiyo Suno; Kentaro Ihara; Dongqing Pan; Keisuke Kakinouchi; Shigeru Sugiyama; Michio Murata; Tsuyoshi Inoue; Kensuke Tono; Changyong Song; Jaehyun Park; Takashi Kameshima; Takaki Hatsui; Yasumasa Joti; Makina Yabashi; So Iwata
Serial femtosecond X-ray crystallography (SFX) has revolutionized atomic-resolution structural investigation by expanding applicability to micrometer-sized protein crystals, even at room temperature, and by enabling dynamics studies. However, reliable crystal-carrying media for SFX are lacking. Here we introduce a grease-matrix carrier for protein microcrystals and obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid–binding protein type 3 under ambient conditions at a resolution of or finer than 2 Å.
Nature | 2015
Norimichi Nomura; Grégory Verdon; Hae Joo Kang; Tatsuro Shimamura; Yayoi Nomura; Yo Sonoda; Saba Abdul Hussien; Aziz Abdul Qureshi; Mathieu Coincon; Yumi Sato; Hitomi Abe; Yoshiko Nakada-Nakura; Tomoya Hino; Takatoshi Arakawa; Osamu Kusano-Arai; Hiroko Iwanari; Takeshi Murata; Takuya Kobayashi; Takao Hamakubo; Michihiro Kasahara; So Iwata; David Drew
The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. On the basis of a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate-binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of Escherichia coli XylE suggests that, in addition to global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices TM7 and TM10 underlie a ‘gated-pore’ transport mechanism in such monosaccharide transporters.