Simonetta Gribaldo
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simonetta Gribaldo.
BMC Evolutionary Biology | 2010
Alexis Criscuolo; Simonetta Gribaldo
BackgroundThe quality of multiple sequence alignments plays an important role in the accuracy of phylogenetic inference. It has been shown that removing ambiguously aligned regions, but also other sources of bias such as highly variable (saturated) characters, can improve the overall performance of many phylogenetic reconstruction methods. A current scientific trend is to build phylogenetic trees from a large number of sequence datasets (semi-)automatically extracted from numerous complete genomes. Because these approaches do not allow a precise manual curation of each dataset, there exists a real need for efficient bioinformatic tools dedicated to this alignment character trimming step.ResultsHere is presented a new software, named BMGE (Block Mapping and Gathering with Entropy), that is designed to select regions in a multiple sequence alignment that are suited for phylogenetic inference. For each character, BMGE computes a score closely related to an entropy value. Calculation of these entropy-like scores is weighted with BLOSUM or PAM similarity matrices in order to distinguish among biologically expected and unexpected variability for each aligned character. Sets of contiguous characters with a score above a given threshold are considered as not suited for phylogenetic inference and then removed. Simulation analyses show that the character trimming performed by BMGE produces datasets leading to accurate trees, especially with alignments including distantly-related sequences. BMGE also implements trimming and recoding methods aimed at minimizing phylogeny reconstruction artefacts due to compositional heterogeneity.ConclusionsBMGE is able to perform biologically relevant trimming on a multiple alignment of DNA, codon or amino acid sequences. Java source code and executable are freely available at ftp://ftp.pasteur.fr/pub/GenSoft/projects/BMGE/.
Philosophical Transactions of the Royal Society B | 2006
Simonetta Gribaldo; Céline Brochier-Armanet
Environmental surveys indicate that the Archaea are diverse and abundant not only in extreme environments, but also in soil, oceans and freshwater, where they may fulfil a key role in the biogeochemical cycles of the planet. Archaea display unique capacities, such as methanogenesis and survival at temperatures higher than 90 °C, that make them crucial for understanding the nature of the biota of early Earth. Molecular, genomics and phylogenetics data strengthen Woeses definition of Archaea as a third domain of life in addition to Bacteria and Eukarya. Phylogenomics analyses of the components of different molecular systems are highlighting a core of mainly vertically inherited genes in Archaea. This allows recovering a globally well-resolved picture of archaeal evolution, as opposed to what is observed for Bacteria and Eukarya. This may be due to the fact that no rapid divergence occurred at the emergence of present-day archaeal lineages. This phylogeny supports a hyperthermophilic and non-methanogenic ancestor to present-day archaeal lineages, and a profound divergence between two major phyla, the Crenarchaeota and the Euryarchaeota, that may not have an equivalent in the other two domains of life. Nanoarchaea may not represent a third and ancestral archaeal phylum, but a fast-evolving euryarchaeal lineage. Methanogenesis seems to have appeared only once and early in the evolution of Euryarchaeota. Filling up this picture of archaeal evolution by adding presently uncultivated species, and placing it back in geological time remain two essential goals for the future.
Current Opinion in Microbiology | 2011
Céline Brochier-Armanet; Patrick Forterre; Simonetta Gribaldo
Little more than 30 years since the discovery of the Archaea, over one hundred archaeal genome sequences are now publicly available, of which ∼40% have been released in the last two years. Their analysis provides an increasingly complex picture of archaeal phylogeny and evolution with the proposal of new major phyla, such as the Thaumarchaeota, and important information on the evolution of key central cellular features such as cell division. Insights have been gained into the events and processes in archaeal evolution, with a number of additional and unexpected links to the Eukaryotes revealed. Taken together, these results predict that many more surprises will be found as new archaeal genomes are sequenced.
BMC Genomics | 2008
Lionel Frangeul; Philippe Quillardet; Anne Marie Castets; Jean-François Humbert; H.C.P. Matthijs; Diego Cortez; Andrew C. Tolonen; Cheng-Cai Zhang; Simonetta Gribaldo; Jan-Christoph Kehr; Yvonne Zilliges; Nadine Ziemert; Sven Becker; Emmanuel Talla; Amel Latifi; Alain Billault; Anthony Lepelletier; Elke Dittmann; Christiane Bouchier; Nicole Tandeau de Marsac
BackgroundThe colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria.ResultsDeciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes.ConclusionMicrocystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.
Genome Biology | 2005
Céline Brochier; Simonetta Gribaldo; Yvan Zivanovic; Fabrice Confalonieri; Patrick Forterre
BackgroundCultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis. The recently described hyperthermophile Nanoarchaeum equitans, harboring the smallest cellular genome ever sequenced (480 kb), has been suggested as the representative of a new phylum - the Nanoarchaeota - that would have diverged before the Crenarchaeota/Euryarchaeota split. Confirming the phylogenetic position of N. equitans is thus crucial for deciphering the history of the archaeal domain.ResultsWe tested the placement of N. equitans in the archaeal phylogeny using a large dataset of concatenated ribosomal proteins from 25 archaeal genomes. We indicate that the placement of N. equitans in archaeal phylogenies on the basis of ribosomal protein concatenation may be strongly biased by the coupled effect of its above-average evolutionary rate and lateral gene transfers. Indeed, we show that different subsets of ribosomal proteins harbor a conflicting phylogenetic signal for the placement of N. equitans. A BLASTP-based survey of the phylogenetic pattern of all open reading frames (ORFs) in the genome of N. equitans revealed a surprisingly high fraction of close hits with Euryarchaeota, notably Thermococcales. Strikingly, a specific affinity of N. equitans and Thermococcales was strongly supported by phylogenies based on a subset of ribosomal proteins, and on a number of unrelated molecular markers.ConclusionWe suggest that N. equitans may more probably be the representative of a fast-evolving euryarchaeal lineage (possibly related to Thermococcales) than the representative of a novel and early diverging archaeal phylum.
Genome Biology and Evolution | 2009
Elie Desmond; Simonetta Gribaldo
The availability of complete genomes from a wide sampling of eukaryotic diversity has allowed the application of phylogenomics approaches to study the origin and evolution of unique eukaryotic cellular structures, but these are still poorly applied to study unique eukaryotic metabolic pathways. Sterols are a good example because they are an essential feature of eukaryotic membranes. The sterol pathway has been well dissected in vertebrates, fungi, and land plants. However, although different types of sterols have been identified in other eukaryotic lineages, their pathways have not been fully characterized. We have carried out an extensive analysis of the taxonomic distribution and phylogeny of the enzymes of the sterol pathway in a large sampling of eukaryotic lineages. This allowed us to tentatively indicate features of the sterol pathway in organisms where this has not been characterized and to point out a number of steps for which yet-to-discover enzymes may be at work. We also inferred that the last eukaryotic common ancestor already harbored a large panel of enzymes for sterol synthesis and that subsequent evolution over the eukaryotic tree occurred by tinkering, mainly by gene losses. We highlight a high capacity of sterol synthesis in the myxobacterium Plesiocystis pacifica, and we support the hypothesis that the few bacteria that harbor homologs of the sterol pathway have likely acquired these via horizontal gene transfer from eukaryotes. Finally, we propose a potential candidate for the elusive enzyme performing C-3 ketoreduction (ERG27 equivalent) in land plants and probably in other eukaryotic phyla.
Nature Reviews Microbiology | 2010
Simonetta Gribaldo; Anthony M. Poole; Vincent Daubin; Patrick Forterre; Céline Brochier-Armanet
The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.
Genome Biology and Evolution | 2013
Guillaume Borrel; Paul W. O’Toole; Hugh M. B. Harris; Pierre Peyret; Jean-François Brugère; Simonetta Gribaldo
Increasing evidence from sequence data from various environments, including the human gut, suggests the existence of a previously unknown putative seventh order of methanogens. The first genomic data from members of this lineage, Methanomassiliicoccus luminyensis and “Candidatus Methanomethylophilus alvus,” provide insights into its evolutionary history and metabolic features. Phylogenetic analysis of ribosomal proteins robustly indicates a monophyletic group independent of any previously known methanogenic order, which shares ancestry with the Marine Benthic Group D, the Marine Group II, the DHVE2 group, and the Thermoplasmatales. This phylogenetic position, along with the analysis of enzymes involved in core methanogenesis, strengthens a single ancient origin of methanogenesis in the Euryarchaeota and indicates further multiple independent losses of this metabolism in nonmethanogenic lineages than previously suggested. Genomic analysis revealed an unprecedented loss of the genes coding for the first six steps of methanogenesis from H2/CO2 and the oxidative part of methylotrophic methanogenesis, consistent with the fact that M. luminyensis and “Ca. M. alvus” are obligate H2-dependent methylotrophic methanogens. Genomic data also suggest that these methanogens may use a large panel of methylated compounds. Phylogenetic analysis including homologs retrieved from environmental samples indicates that methylotrophic methanogenesis (regardless of dependency on H2) is not restricted to gut representatives but may be an ancestral characteristic of the whole order, and possibly also of ancient origin in the Euryarchaeota. 16S rRNA and McrA trees show that this new order of methanogens is very diverse and occupies environments highly relevant for methane production, therefore representing a key lineage to fully understand the diversity and evolution of methanogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Kasie Raymann; Céline Brochier-Armanet; Simonetta Gribaldo
Significance An archaeal origin for eukaryotes is an exciting recent finding. Nevertheless, it has been based largely on the reconstruction of universal trees. The use of an alternative strategy based on markers shared between Archaea and eukaryotes and Archaea and Bacteria bypasses potential problems linked to the analysis of the three domains simultaneously. Comparison of the phylogenies obtained by these two complementary sets of markers supports a sister relationship between eukaryotes and the Thaumarchaeota/“Aigarchaeota” (candidate phylum)/Crenarchaeota/Korarchaeota lineage but also robustly indicates a root of the tree of Archaea that challenges the traditional topology of this domain. This sensibly changes our perspective of the ancient evolution of the Archaea, early life, and Earth. One of the most fundamental questions in evolutionary biology is the origin of the lineage leading to eukaryotes. Recent phylogenomic analyses have indicated an emergence of eukaryotes from within the radiation of modern Archaea and specifically from a group comprising Thaumarchaeota/“Aigarchaeota” (candidate phylum)/Crenarchaeota/Korarchaeota (TACK). Despite their major implications, these studies were all based on the reconstruction of universal trees and left the exact placement of eukaryotes with respect to the TACK lineage unclear. Here we have applied an original two-step approach that involves the separate analysis of markers shared between Archaea and eukaryotes and between Archaea and Bacteria. This strategy allowed us to use a larger number of markers and greater taxonomic coverage, obtain high-quality alignments, and alleviate tree reconstruction artifacts potentially introduced when analyzing the three domains simultaneously. Our results robustly indicate a sister relationship of eukaryotes with the TACK superphylum that is strongly associated with a distinct root of the Archaea that lies within the Euryarchaeota, challenging the traditional topology of the archaeal tree. Therefore, if we are to embrace an archaeal origin for eukaryotes, our view of the evolution of the third domain of life will have to be profoundly reconsidered, as will many areas of investigation aimed at inferring ancestral characteristics of early life and Earth.
Genome Biology | 2009
Diego Cortez; Patrick Forterre; Simonetta Gribaldo
BackgroundArchaeal and bacterial genomes contain a number of genes of foreign origin that arose from recent horizontal gene transfer, but the role of integrative elements (IEs), such as viruses, plasmids, and transposable elements, in this process has not been extensively quantified. Moreover, it is not known whether IEs play an important role in the origin of ORFans (open reading frames without matches in current sequence databases), whose proportion remains stable despite the growing number of complete sequenced genomes.ResultsWe have performed a large-scale survey of potential recently acquired IEs in 119 archaeal and bacterial genomes. We developed an accurate in silico Markov model-based strategy to identify clusters of genes that show atypical sequence composition (clusters of atypical genes or CAGs) and are thus likely to be recently integrated foreign elements, including IEs. Our method identified a high number of new CAGs. Probabilistic analysis of gene content indicates that 56% of these new CAGs are likely IEs, whereas only 7% likely originated via horizontal gene transfer from distant cellular sources. Thirty-four percent of CAGs remain unassigned, what may reflect a still poor sampling of IEs associated with bacterial and archaeal diversity. Moreover, our study contributes to the issue of the origin of ORFans, because 39% of these are found inside CAGs, many of which likely represent recently acquired IEs.ConclusionsOur results strongly indicate that archaeal and bacterial genomes contain an impressive proportion of recently acquired foreign genes (including ORFans) coming from a still largely unexplored reservoir of IEs.