Simranjeet Singh
University of Central Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simranjeet Singh.
Physical Review Letters | 2017
Simranjeet Singh; Jyoti Katoch; Tiancong Zhu; Keng-Yuan Meng; Tianyu Liu; Jack Brangham; Fengyuan Yang; Michael E. Flatté; Roland Kawakami
Two-dimensional materials provide a unique platform to explore the full potential of magnetic proximity-driven phenomena, which can be further used for applications in next-generation spintronic devices. Of particular interest is to understand and control spin currents in graphene by the magnetic exchange field of a nearby ferromagnetic material in graphene-ferromagnetic-insulator (FMI) heterostructures. Here, we present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to FMI magnetization. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. Additionally, we discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the nonlocal spin signals in graphene, which is due to spin relaxation by thermally induced transverse fluctuations of the FMI magnetization.
Applied Physics Letters | 2012
Ajit Kumar Patra; Simranjeet Singh; Brett Barin; Youngbin Lee; Jong-Hyun Ahn; E. del Barco; Eduardo R. Mucciolo; Barbaros Özyilmaz
We demonstrate dynamic spin injection into chemical vapor deposition (CVD) grown graphene by spin pumping from permalloy (Py) layers. Ferromagnetic resonance measurements at room temperature reveal a strong enhancement of the Gilbert damping at the Py/graphene interface, indeed exceeding that observed in Py/platinum interfaces. Similar results are also shown on Co/graphene layers. This enhancement in the Gilbert damping is understood as the consequence of spin pumping at the interface driven by magnetization dynamics. Our observations suggest a strong enhancement of spin-orbit coupling in CVD graphene, in agreement with earlier spin valve measurements.
Applied Physics Letters | 2016
Simranjeet Singh; Jyoti Katoch; Jinsong Xu; Cheng Tan; Tiancong Zhu; Walid Amamou; James Hone; Roland Kawakami
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Scientific Reports | 2016
Kathleen M. McCreary; A. T. Hanbicki; Simranjeet Singh; Roland Kawakami; Glenn G. Jernigan; Masa Ishigami; Amy Ng; Todd H. Brintlinger; Rhonda M. Stroud; Berend T. Jonker
We report on preparation dependent properties observed in monolayer WS2 samples synthesized via chemical vapor deposition (CVD) on a variety of common substrates (Si/SiO2, sapphire, fused silica) as well as samples that were transferred from the growth substrate onto a new substrate. The as-grown CVD materials (as-WS2) exhibit distinctly different optical properties than transferred WS2 (x-WS2). In the case of CVD growth on Si/SiO2, following transfer to fresh Si/SiO2 there is a ~50 meV shift of the ground state exciton to higher emission energy in both photoluminescence emission and optical reflection. This shift is indicative of a reduction in tensile strain by ~0.25%. Additionally, the excitonic state in x-WS2 is easily modulated between neutral and charged exciton by exposure to moderate laser power, while such optical control is absent in as-WS2 for all growth substrates investigated. Finally, we observe dramatically different laser power-dependent behavior for as-grown and transferred WS2. These results demonstrate a strong sensitivity to sample preparation that is important for both a fundamental understanding of these novel materials as well as reliable reproduction of device properties.
ACS Nano | 2016
Søren Ulstrup; Jyoti Katoch; Roland Koch; Daniel Schwarz; Simranjeet Singh; Kathleen M. McCreary; Hyang Keun Yoo; Jinsong Xu; Berend T. Jonker; Roland Kawakami; Eli Rotenberg; Chris Jozwiak
There is a substantial interest in the heterostructures of semiconducting transition metal dichalcogenides (TMDCs) among each other or with arbitrary materials, through which the control of the chemical, structural, electronic, spintronic, and optical properties can lead to a change in device paradigms. A critical need is to understand the interface between TMDCs and insulating substrates, for example, high-κ dielectrics, which can strongly impact the electronic properties such as the optical gap. Here, we show that the chemical and electronic properties of the single-layer (SL) TMDC, WS2, can be transferred onto high-κ transition metal oxide substrates TiO2 and SrTiO3. The resulting samples are much more suitable for measuring their electronic and chemical structures with angle-resolved photoemission than their native-grown SiO2 substrates. We probe the WS2 on the micron scale across 100 μm flakes and find that the occupied electronic structure is exactly as predicted for free-standing SL WS2 with a strong spin-orbit splitting of 420 meV and a direct band gap at the valence band maximum. Our results suggest that TMDCs can be combined with arbitrary multifunctional oxides, which may introduce alternative means of controlling the optoelectronic properties of such materials.
arXiv: Mesoscale and Nanoscale Physics | 2017
Elizabeth J. McCormick; Michael Newburger; Yunqiu Kelly Luo; Kathleen M. McCreary; Simranjeet Singh; Iwan Martin; Edward J Cichewicz; Berend T. Jonker; Roland Kawakami
Monolayer transition metal dichalcogenides (TMD) have immense potential for future spintronic and valleytronic applications due to their 2D nature and long spin/valley lifetimes. We investigate the origin of these long-lived states in n-type WS2 using time-resolved Kerr rotation microscopy and photoluminescence microscopy with ~1 µm spatial resolution. Comparing the spatial dependence of the Kerr rotation signal and the photoluminescence reveals a correlation with neutral exciton emission, which is likely due to the transfer of angular momentum to resident conduction electrons with long spin/valley lifetimes. In addition, we observe an unexpected anticorrelation between the Kerr rotation and trion emission, which provides evidence for the presence of long-lived spin/valley-polarized dark trions. We also find that the spin/valley polarization in WS2 is robust to magnetic fields up to 700 mT, indicative of spins and valleys that are stabilized with strong spin–orbit fields.
Nano Letters | 2017
Simranjeet Singh; Jyoti Katoch; Tiancong Zhu; Ryan J. Wu; Adam Ahmed; Walid Amamou; Dongying Wang; K. Andre Mkhoyan; Roland Kawakami
The quality of the tunnel barrier at the ferromagnet/graphene interface plays a pivotal role in graphene spin valves by circumventing the impedance mismatch problem, decreasing interfacial spin dephasing mechanisms and decreasing spin absorption back into the ferromagnet. It is thus crucial to integrate superior tunnel barriers to enhance spin transport and spin accumulation in graphene. Here, we employ a novel tunnel barrier, strontium oxide (SrO), onto graphene to realize high quality spin transport as evidenced by room-temperature spin relaxation times exceeding a nanosecond in graphene on silicon dioxide substrates. Furthermore, the smooth and pinhole-free SrO tunnel barrier grown by molecular beam epitaxy (MBE), which can withstand large charge injection current densities, allows us to experimentally realize large spin accumulation in graphene at room temperature. This work puts graphene on the path to achieve efficient manipulation of nanomagnet magnetization using spin currents in graphene for logic and memory applications.
Dalton Transactions | 2016
Alvar R. Garrigues; Li Yuan; Lejia Wang; Simranjeet Singh; Enrique del Barco; Christian A. Nijhuis
In this work we present a comparative study of the temperature behavior of charge current in both single-molecule transistors and self-assembled monolayer-based tunnel junctions with symmetrical molecules of alkanethiolates functionalized with a ferrocene (Fc) unit. The Fc unit is separated from the electrodes with two equal alkyl chains of enough length to ensure weak coupling of the Fc unit with the electrodes. These junctions do not rectify charge current and display exponential dependence with temperature with moderate slopes, which can be directly associated to the thermal broadening of the electronic occupation Fermi distribution in the electrodes. The capability to electrically gate the molecular frontier orbital of the Fc (here the highest occupied molecular orbital, HOMO) in the single-molecule transistor, not possible in the two-terminal SAM-based junctions, allows for a detailed comparative between the two classes of junctions. Our findings demonstrate that, although most transport characteristics are equivalent, collective effects arising from interactions between molecules in the self-assembled monolayer greatly affect the energetics of SAM-based junctions, resulting in a bias-independent tunnel current, contrary to the case of the single-molecule junction and as expected from the thermal broadening of the electronic occupation around the Fermi energy in the electrodes.
Nature Physics | 2018
Jyoti Katoch; Søren Ulstrup; Roland J. Koch; Simon Moser; Kathleen M. McCreary; Simranjeet Singh; Jinsong Xu; Berend T. Jonker; Roland Kawakami; Eli Rotenberg; Chris Jozwiak
In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable bandgaps1–3 and strongly bound excitons and trions emerge from strong many-body effects4–6, beyond the spin and valley degrees of freedom induced by spin–orbit coupling and by lattice symmetry7. Combining single-layer TMDs with other 2D materials in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these many-body effects, by means of engineered interlayer interactions8–10. Here, we use micro-focused angle-resolved photoemission spectroscopy (microARPES) and in situ surface doping to manipulate the electronic structure of single-layer WS2 on hexagonal boron nitride (WS2/h-BN). Upon electron doping, we observe an unexpected giant renormalization of the spin–orbit splitting of the single-layer WS2 valence band, from 430 meV to 660 meV, together with a bandgap reduction of at least 325 meV, attributed to the formation of trionic quasiparticles. These findings suggest that the electronic, spintronic and excitonic properties are widely tunable in 2D TMD/h-BN heterostructures, as these are intimately linked to the quasiparticle dynamics of the materials11–13.A microfocused angle-resolved photoemission spectroscopy study of single layers of WS2 on hexagonal boron nitride reveals that, upon electron doping, trionic interactions cause a giant increase of the spin splitting in the valence band.
Applied Physics Letters | 2015
Simranjeet Singh; A. Ahmadi; Christie Thomas Cherian; Eduardo R. Mucciolo; E. del Barco; Barbaros Özyilmaz
We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.