Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique del Barco is active.

Publication


Featured researches published by Enrique del Barco.


Dalton Transactions | 2010

Magnetic quantum tunneling: insights from simple molecule-based magnets

Stephen Hill; Saiti Datta; Junjie Liu; Ross Inglis; Constantinos J. Milios; Patrick L. Feng; J. J. Henderson; Enrique del Barco; Euan K. Brechin; David N. Hendrickson

This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this record. Ultimately, the giant spin approach fails to capture all of the key physics, although it works remarkably well for the purely ferromagnetic cases. Nevertheless, diagonalization of the multi-spin Hamiltonian matrix is necessary in order to fully capture the interplay between exchange and local anisotropy, and the resultant spin-state mixing which ultimately gives rise to the tunneling matrix elements in the high symmetry SMMs (ferromagnetic Mn(3) and Ni(4)). The simplicity (low-nuclearity, high-symmetry, weak disorder, etc.) of the molecules highlighted in this study proves to be of crucial importance. Not only that, these simple molecules may be considered among the best SMMs: Mn(6) possesses the record anisotropy barrier, and Mn(3) is the first SMM to exhibit quantum tunneling selection rules that reflect the intrinsic symmetry of the molecule.


Nature Communications | 2015

Controlling the direction of rectification in a molecular diode

Li Yuan; Nisachol Nerngchamnong; Liang Cao; Hicham Hamoudi; Enrique del Barco; Max Roemer; Ravi K. Sriramula; Damien Thompson; Christian A. Nijhuis

A challenge in molecular electronics is to control the strength of the molecule-electrode coupling to optimize device performance. Here we show that non-covalent contacts between the active molecular component (in this case, ferrocenyl of a ferrocenyl-alkanethiol self-assembled monolayer (SAM)) and the electrodes allow for robust coupling with minimal energy broadening of the molecular level, precisely what is required to maximize the rectification ratio of a molecular diode. In contrast, strong chemisorbed contacts through the ferrocenyl result in large energy broadening, leakage currents and poor device performance. By gradually shifting the ferrocenyl from the top to the bottom of the SAM, we map the shape of the electrostatic potential profile across the molecules and we are able to control the direction of rectification by tuning the ferrocenyl-electrode coupling parameters. Our demonstrated control of the molecule-electrode coupling is important for rational design of materials that rely on charge transport across organic-inorganic interfaces.


Inorganic Chemistry | 2010

Large Spin-State Changes in Isostructural Cyanate- and Azide-Bridged Mn3IIIMn2II Single-Molecule Magnets

Patrick L. Feng; Casey J. Stephenson; Asma Amjad; Gavin Ogawa; Enrique del Barco; David N. Hendrickson

We prepared three structurally related Mn(3)(III)Mn(2)(II) complexes that possess S approximately 1-11 spin ground states as a result of variations in the geometry and identity of mu(2)-eta(1):eta(1) bridging groups. These complexes function as single-molecule magnets yet demonstrate other interesting behavior such as quasi-classical magnetization hysteresis and comparable magnetization reversal barriers (U(eff)).


Scientific Reports | 2016

A single-level tunnel model to account for electrical transport through single molecule-and self-assembled monolayer-based junctions

Alvar R. Garrigues; Li Yuan; Lejia Wang; Eduardo R. Mucciolo; Damien Thompon; Enrique del Barco; Christian A. Nijhuis

We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction.


Inorganic Chemistry | 2008

Molecular wheels: new Mn12 complexes as single-molecule magnets.

Sonali J. Shah; Christopher M. Ramsey; Katie J. Heroux; Antonio G. DiPasquale; N. S. Dalal; Arnold L. Rheingold; Enrique del Barco; David N. Hendrickson

The preparation, structure and magnetic properties of three new wheel-shaped dodecanuclear manganese complexes, [Mn12(Adea)8(CH3COO)14] x 7 CH3CN (1 x 7CH3CN), [Mn12(Edea)8(CH3CH2COO)14] (2) and [Mn12(Edea)8(CH3COO)2(CH3CH2COO)12] (3), are reported, where Adea(2-) and Edea(2-) are dianions of the N-allyl diethanolamine and the N-ethyl diethanolamine ligands, respectively. Each complex has six Mn(II) and six Mn(III) ions alternating in a wheel-shaped topology, with eight n-substituted diethanolamine dianions. All variable-temperature direct current (DC) magnetic susceptibility data were collected in 1, 0.1, or 0.01 T fields and in the 1.8-300 K temperature range. Heat capacity data, collected in applied fields of 0-9 T and in the 1.8-100 K temperature range, indicate the absence of a phase-transition due to long-range magnetic ordering for 1 and 3. Variable-temperature, variable-field DC magnetic susceptibility data were obtained in the 1.8-10 K and 0.1-5 T ranges. All complexes show out-of-phase signals in the AC susceptibility measurements, collected in a 50-997 Hz frequency range and in a 1.8-4.6 K temperature range. Extrapolation to 0 K of the in-phase AC susceptibility data collected at 50 Hz indicates an S = 7 ground state for 1, 2, and 3. Magnetization hysteresis data were collected on a single crystal of 1 in the 0.27-0.9 K range and on single crystals of 2 and 3 in the 0.1-0.9 K temperature range. Discrete steps in the magnetization curves associated with resonant quantum tunneling of magnetization (QTM) confirm these complexes to be single-molecule magnets. The appearance of extra QTM resonances on the magnetic hysteresis of 1 is a result of a weak coupling between two Mn ions at opposite ends of the wheel, dividing the molecule into two ferromagnetic exchange-coupled S = 7/2 halves. The absence of these features on 2 and 3, which behave as rigid spin S = 7 units, is a consequence of different interatomic distances.


Inorganic Chemistry | 2008

Single-Molecule-Magnet Behavior and Spin Changes Affected by Crystal Packing Effects

Patrick L. Feng; Changhyun Koo; J. J. Henderson; Motohiro Nakano; Stephen Hill; Enrique del Barco; David N. Hendrickson

Five Mn 3Zn 2 heterometallic complexes have been synthesized and structurally and magnetically characterized. Spin ground states up to S = 6 have been observed for these complexes and are shown to depend on the cocrystallizing cation and on the terminal ligand. Large axial zero-field interactions ( D = -1.16 K) are the result of near-parallel alignment of the Mn (III) Jahn-Teller axes. High-frequency electron paramagnetic resonance, single-crystal magnetization hysteresis, and alternating current susceptibility measurements are presented to characterize [NEt 4] 3[Mn 3Zn 2(salox) 3O(N 3) 6X 2] [X (-) = Cl (-) ( 1), Br (-) ( 2)] and [AsPh 4] 3[Mn 3Zn 2(salox) 3O(N 3) 6Cl 2] ( 3) and reveal that 1 and 2 are single-molecule magnets ( U eff = 44 K), while 3 is not.


Nature Nanotechnology | 2017

Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions

Xiaoping Chen; Max Roemer; Li Yuan; Wei Du; Damien Thompson; Enrique del Barco; Christian A. Nijhuis

Molecular diodes operating in the tunnelling regime are intrinsically limited to a maximum rectification ratio R of ∼103. To enhance this rectification ratio to values comparable to those of conventional diodes (R ≥ 105) an alternative mechanism of rectification is therefore required. Here, we report a molecular diode with R = 6.3 × 105 based on self-assembled monolayers with Fc-C≡C-Fc (Fc, ferrocenyl) termini. The number of molecules (n(V)) involved in the charge transport changes with the polarity of the applied bias. More specifically, n(V) increases at forward bias because of an attractive electrostatic force between the positively charged Fc units and the negatively charged top electrode, but remains constant at reverse bias when the Fc units are neutral and interact weakly with the positively charged electrode. We successfully model this mechanism using molecular dynamics calculations.


Inorganic Chemistry | 2010

Ferromagnetic ordering and simultaneous fast magnetization tunneling in a Ni4 single-molecule magnet.

Christopher C. Beedle; J. J. Henderson; Pei-Chun Ho; T. A. Sayles; Motohiro Nakano; James R. O’Brien; Katie J. Heroux; Enrique del Barco; M. Brian Maple; David N. Hendrickson

Low-temperature heat capacity and oriented single-crystal field-cooled and zero-field-cooled magnetization data for the single-molecule magnet [Ni(hmp)(dmb)Cl](4) are presented that indicate the presence of ferromagnetic ordering at approximately 300 mK, which has little effect on the magnetization relaxation rates.


Inorganic Chemistry | 2011

Cationic Mn4 Single-Molecule Magnet with a Sterically Isolated Core

Katie J. Heroux; Hajrah M. Quddusi; Junjie Liu; James R. O’Brien; Motohiro Nakano; Enrique del Barco; Stephen Hill; David N. Hendrickson

The synthesis, structure, and magnetic properties of a ligand-modified Mn(4) dicubane single-molecule magnet (SMM), [Mn(4)(Bet)(4)(mdea)(2)(mdeaH)(2)](BPh(4))(4), are presented, where the cationic SMM units are significantly separated from neighboring molecules in the crystal lattice. There are no cocrystallized solvate molecules, making it an ideal candidate for single-crystal magnetization hysteresis and high-frequency electron paramagnetic resonance studies. Increased control over intermolecular interactions in such materials is a crucial factor in the future application of SMMs.


Nature Communications | 2016

Electrostatic control over temperature-dependent tunnelling across a single-molecule junction

Alvar R. Garrigues; Lejia Wang; Enrique del Barco; Christian A. Nijhuis

Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.

Collaboration


Dive into the Enrique del Barco's collaboration.

Top Co-Authors

Avatar

Stephen Hill

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simranjeet Singh

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Ramsey

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

J. J. Henderson

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

James H. Atkinson

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian A. Nijhuis

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge