Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sin Tee Tan is active.

Publication


Featured researches published by Sin Tee Tan.


Ultrasonics Sonochemistry | 2014

ZnO nanocubes with (1 0 1) basal plane photocatalyst prepared via a low-frequency ultrasonic assisted hydrolysis process

Sin Tee Tan; Akrajas Ali Umar; Aamna Balouch; Muhammad Yahaya; Chi Chin Yap; Muhamad Mat Salleh; Munetaka Oyama

The crystallographic plane of the ZnO nanocrystals photocatalyst is considered as a key parameter for an effective photocatalysis, photoelectrochemical reaction and photosensitivity. In this paper, we report a simple method for the synthesis of a new (101) high-energy plane bounded ZnO nanocubes photocatalyst directly on the FTO surface, using a seed-mediated ultrasonic assisted hydrolysis process. In the typical procedure, high-density nanocubes and quasi-nanocubes can be grown on the substrate surface from a solution containing equimolar (0.04 M) zinc nitrate hydrate and hexamine. ZnO nanocubes, with average edge-length of ca. 50 nm, can be obtained on the surface in as quickly as 10 min. The heterogeneous photocatalytic property of the sample has been examined in the photodegradation of methyl orange (MO) by UV light irradiation. It was found that the ZnO nanocubes exhibit excellent catalytic and photocatalytic properties and demonstrate the photodegradation efficiency as high as 5.7 percent/μg mW. This is 200 times higher than those reported results using a relatively low-powered polychromatic UV light source (4 mW). The mechanism of ZnO nanocube formation using the present approach is discussed. The new-synthesized ZnO nanocubes with a unique (101) basal plane also find potential application in photoelectrochemical devices and sensing.


ACS Combinatorial Science | 2014

Ag–ZnO Nanoreactor Grown on FTO Substrate Exhibiting High Heterogeneous Photocatalytic Efficiency

Sin Tee Tan; Akrajas Ali Umar; Aamna Balouch; Suratun Nafisah; Muhammad Yahaya; Chi Chin Yap; Muhamad Mat Salleh; I. V. Kityk; Munetaka Oyama

This Research Article reports an unusually high efficiency heterogeneous photodegradation of methyl orange (MO) in the presence of Ag nanoparticle-loaded ZnO quasi-nanotube or nanoreactor (A-ZNRs) nanocatalyst grown on FTO substrate. In typical process, photodegradation efficiency of as high as 21.6% per μg per Watts of used catalyst and UV power can be normally obtained within only a 60-min reaction time from this system, which is 10(3) order higher than the reported results. This is equivalent to the turnover frequency of 360 mol mol(-1) h(-1). High-density hexagonal A-ZNRs catalysts were grown directly on FTO substrate via a seed-mediated microwave-assisted hydrolysis growth process utilizing Ag nanoparticle of approximately 3 nm in size as nanoseed and mixture aqueous solution of Zn(NO3)·6H2O, hexamethylenetetramine (HMT), and AgNO3 as the growth solution. A-ZNRs adopts hexagonal cross-section morphology with the inner surface of the reactor characterized by a rough and rugged structure. Transmission electron microscopy imaging shows the Ag nanoparticle grows interstitially in the ZnO nanoreactor structure. The high photocatalytic property of the A-ZNRs is associated with the highly active of inner sides surface of A-ZNRs and the oxidizing effect of Ag nanoparticle. The growth mechanism as well as the mechanism of the enhanced-photocatalytic performance of the A-ZNRs will be discussed.


Scientific Reports | 2016

Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement

Hock Beng Lee; Riski Titian Ginting; Sin Tee Tan; Chun Hui Tan; Abdelelah Alshanableh; Hind Fadhil Oleiwi; Chi Chin Yap; Mohd Hafizuddin Hj. Jumali; Muhammad Yahaya

Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface –OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device.


RSC Advances | 2016

Two-dimensional CdS intercalated ZnO nanorods: a concise study on interfacial band structure modification

Hind Fadhil Oleiwi; Sin Tee Tan; Hock Beng Lee; Chi Chin Yap; Riski Titian Ginting; Azmi Zakaria; Abdelelah Alshanableh; Chun Hui Tan; Mohammad Hafizuddin Haji Jumali; Muhammad Yahaya; Zainal Abidin Talib

The controllable growth of metal sulfide–metal oxide based nanomaterials with a tunable band gap structure is vital in the fabrication of new generation optoelectronic devices. In this paper, two-dimensional hierarchical CdS/ZnO nanorod arrays were successfully grown via a low temperature hydrothermal-SILAR method. A concise mechanism related to the surface and band gap modification on the CdS/ZnO nanorods was investigated under various CdS deposition cycles (N). The diameter and surface roughness properties of the sample were found to be linearly dependent on the value of N. A bathochromic shift in the optical energy band gap revealed the quantum size effects of the CdS/ZnO nanorods, as well as the induced interface band state and energy band split in the ZnO band state. An impressive improvement in the crystallinity of the sample was also observed under the CdS treatment. The correlation between the optical band gap and photovoltaic efficiency was evaluated. The results proved that the ZnO nanorod/CdS devices exhibited a threefold higher power conversion efficiency in comparison to a pristine ZnO nanorod device.


Key Engineering Materials | 2014

Synthesis of ZnO Nanorod Arrays by Chemical Solution and Microwave Method for Sensor Application

Muhammad Yahaya; Sin Tee Tan; Akrajas Ali Umar; Chi Chin Yap; Muhamad Mat Salleh

One-dimensional ZnO semiconductor nanomaterials have been attracting increasing attention due to their outstanding properties, which are different from bulk materials. ZnO has a direct band gap of 3.37 eV and large exciton binding energy hence its nanowires and nanorods have been regarded as one of the most promising materials for nanoscale electronic and optoelectronic devices such as ultraviolet laser diodes, optical detectors and gas sensor. ZnO nanowires and nanorods have been successfully synthesized by various techniques such as evaporation, sputtering and pyrolysis. In this paper we report the preparation of nanorod arrays of ZnO on ITO glass substrates which were pre-coated with ZnO nanoparticles by using low temperature chemical solution method and the result was compared with microwave hydrolysis process. The morphology and structure of ZnO nanorod arrays were investigated using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The ZnO nanorod arrays with a diameter of 40-70 nm were successfully synthesized. In microwave hydrolysis method, the diameter, density and surface roughness was found to depend on the microwave power. The microwave method is far superior in producing ZnO nanostructure growth.


Journal of Physics: Conference Series | 2013

Ultrafast formation of ZnO nanorods via seed-mediated microwave assisted hydrolysis process

Sin Tee Tan; A. A. Umar; Muhammad Yahaya; Chi Chin Yap; Muhamad Mat Salleh

One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.


1st UKM-ISESCO-COMSATS International Workshop on Nanotechnology for Young Scientists, IWYS 2016 | 2017

Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method

Hind Fadhil Oleiwi; Azmi Zakaria; Chi Chin Yap; Haidr Abdulzahra Abbas; Sin Tee Tan; Hock Beng Lee; Chun Hui Tan; Riski Titian Ginting; Abdelelah Alshanableh; Zainal Abidin Talib

One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrier recombination between ZNRs and P3HT:PC61BM after the deposition of CdS QDs. The CdS QDs sensitized ZNRs reported herein exhibit great potential for advanced optoelectronic application.One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrie...


THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium | 2016

Tailoring the photovoltaic performance of inverted hybrid solar cells by replacing PEDOT:PSS with V2Ox as hole-extraction layer

Hock Beng Lee; Sin Tee Tan; Riski Titian Ginting; Chun Hui Tan; Hind Fadhil Oleiwi; Chi Chin Yap; Mohd. Hafizuddin Haji Jumali

For nanoscale fabrication of organic photovoltaic device, the utilization of a hole extraction layer (HEL) is essential to prevent the wrong flow of charge carriers and overcome the Schottky barrier at electrode-polymer interface. In recent years, the degradation issue of PEDOT:PSS based device which arises from its acidic nature and extremely hygroscopic properties has prompted researchers to find an appropriate transition metal oxide as replacement. In current work, we introduced an entirely solution-processed substoichiometric vanadium oxide (V2Ox) as HEL in inverted polymer:fullerene based device. We demonstrated the efficiency of substoichiometric V2Ox layer in enhancing the device performance of inverted organic solar cells, with the PCE of the device increased from 1.91 to 2.89%. The V2Ox prepared herein was found to exhibit broad optical absorption, highly selective charge transporting properties and excellent film transparency. A robust correlation between the hole extraction nature and electroni...


THE 2016 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium | 2016

Growth concentration effect on oxygen vacancy induced band gap narrowing and optical CO gas sensing properties of ZnO nanorods

Chun Hui Tan; Sin Tee Tan; Hock Beng Lee; Chi Chin Yap; Muhammad Yahaya

Band gap energy and surface defect on the nanostructure play an important role especially in determining the performance and properties of the optical based gas sensor. In this report, ZnO nanorods (ZNRs) with various growth concentrations were successfully synthesized using a facile wet chemical approach. The gas sensing performance of the ZNRs samples with different concentrations were tested toward the highly hazardous carbon monoxide (CO) gas at a concentration of 10 ppm operated at room temperature. It was found that the 40 mM ZNRs sample exhibited the highest response coupled with the shortest response time (123.3 ± 1.3 s) and recovery time (7.7 ± 0.3 s). The high response and accelerated sensing reaction were attributed to the band gap narrowing of the 40 mM ZNRs induced by the increase in oxygen vacancy related defect states, and it is directly proportional to the CO gas sensing activity. These defects acted as the oxygen trap sites which will promote the oxygen adsorption on the surface of ZNRs a...


THE 2013 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium | 2013

Preparation of patterned graphene-ZnO hybrid nanoflower and nanorods on ITO surface

Sin Tee Tan; Akrajas Ali Umar; Marjoni Imamora Ali Umar; Riski Titian Ginting; Muhammad Yahaya; Chi Chin Yap; Muhamad Mat Salleh; Burhanuddin Yeop Majlis; Fitri Yenni Naumar

Hybrid ZnO nanostructure with controlled morphology have been proved to enhance the physical and chemical properties of the material and used as photodiode and sensor. In this paper, hybrid graphene-ZnO nanoflower and nanorods have been successfully synthesized via a seed mediated method with micropatterned ZnO nanoseed treated with multilayer graphene (MLG) in a hydrothermal process. In typical process, the ZnO nanoseeds with and without resists were spin coated with a multilayer graphene prior to the growth process. The treated seed was then used to grow the ZnO nanostructures in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate and hexamethylenetetramine. The growth process was carried out inside an autoclave at temperature 70 °C. The growth time was 4 h. It was proved that the MLG treatment on micropatterning substrate may induce new morphology formation of ZnO nanostructure. It is expected that the heteroepitaxy reaction occurred between the MLG and ZnO interface. This presence method can be used as an alternative approach to control the morphology of hybrid ZnO nanostructure growth.

Collaboration


Dive into the Sin Tee Tan's collaboration.

Top Co-Authors

Avatar

Chi Chin Yap

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Akrajas Ali Umar

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Muhamad Mat Salleh

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Muhammad Yahaya

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Chun Hui Tan

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hock Beng Lee

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelelah Alshanableh

National University of Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge