Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sinan Ali is active.

Publication


Featured researches published by Sinan Ali.


Molecular & Cellular Proteomics | 2011

N-glycans modulate the function of human corticosteroid-binding globulin

Zeynep Sumer-Bayraktar; Daniel Kolarich; Matthew Campbell; Sinan Ali; Nicolle H. Packer; Morten Thaysen-Andersen

Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues.


Journal of Neuroendocrinology | 2003

Activational Effects of Gonadal Steroids on Hypothalamo‐Pituitary‐Adrenal Regulation in the Rat Disclosed by Response to Dexamethasone Suppression

Osborne F. X. Almeida; Virginie Canoine; Sinan Ali; Florian Holsboer; Vladimir K. Patchev

Previous studies demonstrated that gonadal steroids secreted during perinatal life permanently ‘organize’ the mechanisms governing hypothalamo‐pituitary‐adrenal (HPA) function, leading to sexually differentiated patterns of pituitary‐adrenal activity under basal and stress conditions. In this paper, we show that gonadal steroids can also exert ‘activational’ effects upon the HPA system. Examination of the ability of different doses of dexamethasone to suppress the nocturnal increase in corticosterone secretion and to attenuate the gene expression of CRH in the hypothalamic paraventricular nucleus of intact and gonadectomized male and female rats revealed that ovarian steroids make an important contribution to the higher sensitivity of the pituitary‐adrenal axis in females to glucocorticoid suppression, whereas testicular steroids may be causal to the male’s moderate responsiveness to glucocorticoid feedback. These findings may be implicated in a number of psychiatric and neurological disease states commonly associated with impaired HPA regulation, but which may be primarily rooted in altered gonadal steroid secretion.


Proteomics | 2012

Micro‐ and macroheterogeneity of N‐glycosylation yields size and charge isoforms of human sex hormone binding globulin circulating in serum

Zeynep Sumer-Bayraktar; Terry Nguyen-Khuong; Roxana G. Jayo; David D. Y. Chen; Sinan Ali; Nicolle H. Packer; Morten Thaysen-Andersen

Human sex hormone binding globulin (hSHBG) is a serum glycoprotein central to the transport and targeted delivery of sex hormones to steroid‐sensitive tissues. Several molecular mechanisms of action of hSHBG, including the function of its attached glycans remain unknown. Here, we perform a detailed site‐specific characterization of the N‐ and O‐linked glycosylation of serum‐derived hSHBG. MS‐driven glycoproteomics and glycomics combined with exoglycosidase treatment were used in a bottom‐up and top‐down manner to determine glycosylation sites, site‐specific occupancies and monosaccharide compositions, detailed glycan structures, and the higher level arrangement of glycans on intact hSHBG. It was found that serum‐derived hSHBG is N‐glycosylated at Asn351 and Asn367 with average molar occupancies of 85.1 and 95.3%, respectively. Both sites are occupied by the same six sialylated and partly core fucosylated bi‐ and triantennary N‐Glycoforms with lactosamine‐type antennas of the form (±NeuAcα6)Galβ4GlcNAc. N‐Glycoforms of Asn367 were slightly more branched and core fucosylated than Asn351 N‐glycoforms due probably to a more surface‐exposed glycosylation site. The N‐terminal Thr7 was fully occupied by the two O‐linked glycans NeuAcα3Galβ3(NeuAcα6)GalNAc (where NeuAc is N‐acetylneuraminic acid and GalNAc is N‐acetylgalactosamine) and NeuAcα3Galβ3GalNAc in a 1:6 molar ratio. Electrophoretic analysis of intact hSHBG revealed size and charge heterogeneity of the isoforms circulating in blood serum. Interestingly, the size and charge heterogeneity were shown to originate predominantly from differential Asn351 glycan occupancies and N‐glycan sialylation that may modulate the hSHBG activity. To date, this work represents the most detailed structural map of the heterogeneous hSHBG glycosylation, which is a prerequisite for investigating the functional aspects of the hSHBG glycans.


Brain Behavior and Immunity | 2006

Individual differences in glucose homeostasis: do our early life interactions with bacteria matter?

Frederick R. Walker; Julie A. Owens; Sinan Ali; Deborah M. Hodgson

Exposure to endotoxin during the neonatal period in the rat has been shown to alter the development of the hypothalamic-pituitary-adrenal axis, inducing hyper-responsivity and increased glucocorticoid production in later-life. Glucocorticoids are known to have major metabolic effects, therefore, early life endotoxin exposure may have potentially serious consequences for metabolic homeostasis in the exposed animal. The aims of this study were therefore to assess the effect of neonatal bacterial endotoxin exposure on subsequent glucose homeostasis, insulin action and corticosterone production from puberty through to senescence. Male Fischer-344 rat pups were treated with bacterial endotoxin (0.05 mg/kg Salmonella enteritidis i.p.) or vehicle (sterile pyrogen free saline) on days 3 and 5 postnatally. Insulin and glucose levels were assessed before and during and intraperitoneal glucose tolerance test (IPGTT) together with body mass on postnatal days 40, 80, and 400. In addition, circulating levels of corticosterone were measured at 0, 30, and 90 min following a 30-min restraint challenge at these ages. Neonatal endotoxin challenge did not alter fasting plasma glucose or insulin, but impaired glucose tolerance at puberty (p<.05), improved glucose tolerance in adulthood (p<.05) and had no effect at senescence. During the IPGTT insulin was reduced at all ages (p<.05) following neonatal endotoxin challenge, but insulin sensitivity was unaltered, except for an increase in adulthood (p<.05), which is consistent with the observed improvement in glucose tolerance at this age. Neonatal endotoxin challenge reduced body mass during puberty and senescence (p<.05) but did not alter basal or stressed plasma corticosterone levels at any of the three developmental time points examined. These findings suggest that variations in an individuals early life bacterial environment may contribute to differences in glucose homeostasis, insulin action and disease susceptibility later in life.


The Journal of Steroid Biochemistry and Molecular Biology | 2006

Hormonal effects on the secretion and glycoform profile of corticosteroid-binding globulin.

Robin Mihrshahi; John G. Lewis; Sinan Ali

Corticosteroid-binding globulin (CBG) is a plasma glycoprotein that is primarily synthesized in the liver and binds cortisol and progesterone with high affinity. In this study, a CBG secreting hepatocellular carcinoma derived cell line (HepG2) was used to investigate the hormonal regulation of hepatic CBG synthesis. HepG2 cells were grown for 72 h in 30, 300 and 3000 nM concentrations of estradiol (E2), testosterone (T), insulin, thyroxin (T4) and dexamethasone (DMZ) and the secreted CBG quantified by a novel enzyme-linked immunosorbent assay (ELISA). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) was carried out to determine the effects of these hormones on the relative distribution of CBG glycoforms. Insulin, T4 and high concentrations of E2 decreased the secretion of CBG by HepG2 cells (p<0.05). Ethanol, the solvent used for E2, T and DMZ, also significantly attenuated CBG secretion. 2D-PAGE resolved 13-14 glycoforms of CBG produced by HepG2 cells. Insulin caused a reduction in the synthesis of more acidic, while T4 and DMZ decreased the production of more basic CBG glycoforms. Stimulation with E2 resulted in the synthesis of additional isoforms of increased acidity, which may represent a type of CBG only seen during pregnancy in vivo. Possible physiological implications of these findings are discussed.


Biological Reviews | 2004

Comparison of molecular mechanisms mediating cell contact phenomena in model developmental systems: an exploration of universality

Vivienne M. Bowers-Morrow; Sinan Ali; Keith L. Williams

Are there universal molecular mechanisms associated with cell contact phenomena during metazoan ontogenesis? Comparison of adhesion systems in disparate model systems indicates the existence of unifying principles.


Steroids | 1995

Studies on the role of glycosylation in the origin of the electrophoretic variants for rat corticosteroid-binding globulin

Sinan Ali; J.R. Bassett

The glycoprotein corticosteroid-binding globulin (CBG) migrates as doublet bands in PAGE and SDS-PAGE, and as numerous bands in isoelectric focusing (IEF). This study deals with the origin of this heterogeneity. Desialation of rat CBG with neuraminidase does not abolish the doublet in either PAGE or SDS-PAGE, indicating that the doublet does not arise as a result of differences in sialic acid residues. Treatment of the separated upper and lower variants of native CBG with N-glycosidase F (PNGase-F) shows a differential pattern of deglycosylation over time indicating either differences in the number, type, or location of sugars attached to each of the variants. Rate of deglycosylation is quicker and more extensive for the upper variant when compared to the lower variant. PNGase-F treatment of 1% SDS-denatured CBG does not abolish the CBG doublet seen in SDS-PAGE, indicating that there is variation in the protein moiety. Sugars could not be detected on PNGase-F treated CBG using either wheat germ aglutinin horse radish peroxidase conjugate, concavilin-A HRP conjugate, or the digoxigenin glycan detection system. While the results clearly show differences in glycosylation between the CBG variants, differences in the protein moiety may also occur to give rise to the heterogeneity seen in CBG. The latter is supported by the fact that desialated CBG migrates as two bands in IEF. Migration in IEF is based solely on charge, and since only sialic acid residues are charged in N-linked glycosylation, any heterogeneity seen for the desialated glycoprotein must reside within the protein moiety itself. The presence of O-glycosylation containing an N-acetylgalactosamine with a beta 1-3 linkage to galactose could not be demonstrated using O-glycosidase. N-terminal blockage could not account for the variation, as both the upper and lower variants were able to be sequenced resulting in identical sequences for the first 13 amino acids. The data presented supports the hypothesis that the differences in the sugar as well as the protein moiety are responsible for the heterogeneity seen for CBG.


The Journal of Steroid Biochemistry and Molecular Biology | 1991

The release of corticosterone and a corticosterone-binding protein by incubated rat adrenal slices

Sinan Ali; J.R. Bassett

Stimulation of incubated rat adrenal slices with ACTH(1-24) resulted in an increase in the release of both corticosterone and specific corticosterone-binding protein into the incubation medium. The release of corticosterone and binding protein was dose and calcium dependent with adrenals from animals pretreated with betamethasone. While the secretion of corticosterone was continuous throughout the incubation period, there appeared to be a limit to the increase in binding capacity. The specificity of steroid binding to the adrenal protein showed a similar profile to that of corticosteroid-binding globulin (CBG) in rat serum. A Western blot analysis using anti-rat CBG as the primary antiserum, showed that the adrenal protein was not CBG. [3H]corticosterone binding with disc electrophoresis, run at 2 degrees C, gave a single peak with approximately the same Rf value for rat serum, purified CBG, and adrenal incubate; at 22 degrees C peaks were only seen for rat serum or purified CBG. The data presented provides further evidence for the existence of a specific corticosterone-binding protein of adrenal origin released in conjunction with corticosterone. The adrenal protein would appear to have a lower affinity for corticosterone than does CBG, and to be functionally more labile. It is possible that the adrenal protein may be CBG that has been internalized, modified and released with corticosterone.


Cell Biology International | 2002

CELL ADHESION DURING THE MIGRATORY SLUG STAGE OF DICTYOSTELIUM DISCOIDEUM

Vivienne M. Bowers-Morrow; Sinan Ali; Keith L. Williams

Prespore‐specific Antigen (PsA) is selectively expressed on the surface of prespore cells at the multicellular migratory slug stage of Dictyostelium discoideum development. It is a developmentally regulated glycoprotein that is anchored to the cell membrane through a glycosyl phosphatidylinositol (GPI) anchor. We present the results of an in vitro immunological investigation of the hypothesis that PsA functions as a cell adhesion molecule (CAM), and of a ligand‐binding assay indicating that PsA has cell membrane binding partner(s). This is the first evidence to implicate a direct role for a putative CAM in cell—cell adhesion during the multicellular migratory slug stage of D. discoideum development. Cell—cell adhesion assays were carried out in the presence or absence of the monoclonal antibody (mAb) MUD1 that has a single antigenic determinant: a peptide epitope on PsA. These assays showed specific inhibition of cell—cell adhesion by MUD1. Further, it was found that a purified recombinant form of PsA (rPsA), can neutralize the inhibitory effect of MUD1; the inhibitory effect on cell—cell adhesion is primarily due to the blocking of PsA by the mAb. The resistance of aggregates to dissociation in the presence of 10mM EDTA (ethylenediamintetraacetic acid) indicates that PsA mediates EDTA‐stable cell—cell contacts, and that PsA‐mediated cell adhesion is likely to be independent of divalent cations such as Ca2+ or Mg2+.


Developmental Psychobiology | 2009

Maternal prenatal anxiety, postnatal caregiving and infants' cortisol responses to the still-face procedure.

Kerry-Ann Grant; Catherine McMahon; Marie-Paule Austin; Nicole Reilly; Leo R. Leader; Sinan Ali

Collaboration


Dive into the Sinan Ali's collaboration.

Top Co-Authors

Avatar

Amina Zuberi

Quaid-i-Azam University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge