Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siri Tähtinen is active.

Publication


Featured researches published by Siri Tähtinen.


Clinical Cancer Research | 2013

Antiviral and Antitumor T-cell Immunity in Patients Treated with GM-CSF–Coding Oncolytic Adenovirus

Anna Kanerva; Petri Nokisalmi; Iulia Diaconu; Anniina Koski; Vincenzo Cerullo; Ilkka Liikanen; Siri Tähtinen; Minna Oksanen; Raita Heiskanen; S Pesonen; T. Joensuu; Tuomo Alanko; Kaarina Partanen; Leena Laasonen; Kalevi Kairemo; Sari Pesonen; Lotta Kangasniemi; Akseli Hemminki

Purpose: Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously naïve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a “serial treatment” consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM–CSF)–coding capsid chimeric adenovirus, CGTG-102. Results: Following serial treatment, both increase and decrease in antitumor T cells in blood were seen more frequently, findings which are compatible with induction of T-cell immunity and trafficking of T cells to tumors, respectively. Safety was good in both groups. In 115 patients treated with CGTG-102 (Ad5/3-D24-GMCSF), median overall survival was 111 days following single and 277 days after serial treatment in nonrandomized comparison. Switching the virus capsid for avoiding neutralizing antibodies in a serial treatment featuring three different viruses did not impact safety or efficacy. A correlation between antiviral and antitumor T cells was seen (P = 0.001), suggesting that viral oncolysis can result in epitope spreading and breaking of tumor-associated immunologic tolerance. Alternatively, some patients may be more susceptible to induction of T-cell immunity and/or trafficking. Conclusions: These results provide the first human data linking antiviral immunity with antitumor immunity, implying that oncolytic viruses could have an important role in cancer immunotherapy. Clin Cancer Res; 19(10); 2734–44. ©2013 AACR.


Cancer immunology research | 2015

Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor

Siri Tähtinen; Susanna Grönberg-Vähä-Koskela; Dave Lumen; Maiju Merisalo-Soikkeli; Mikko Siurala; Anu J. Airaksinen; Markus Vähä-Koskela; Akseli Hemminki

Tähtinen and colleagues report that intratumoral injection of nonreplicating adenovirus can overcome immune tolerance and resistance of B16.OVA murine melanomas to T-cell therapy by recruitment and stimulation of tumor-infiltrating immune cells, thus improving the efficacy of adoptive T-cell therapy in solid tumors. Despite the rapid progress in the development of novel adoptive T-cell therapies, the clinical benefits in treatment of established tumors have remained modest. Several immune evasion mechanisms hinder T-cell entry into tumors and their activity within the tumor. Of note, oncolytic adenoviruses are intrinsically immunogenic due to inherent pathogen-associated molecular patterns. Here, we studied the capacity of adenovirus to overcome resistance of chicken ovalbumin-expressing B16.OVA murine melanoma tumors to adoptive ovalbumin-specific CD8+ T-cell (OT-I) therapy. Following intraperitoneal transfer of polyclonally activated OT-I lymphocytes, control of tumor growth was superior in mice given intratumoral adenovirus compared with control mice, even in the absence of oncolytic virus replication. Preexisting antiviral immunity against serotype 5 did not hinder the therapeutic efficacy of the combination treatment. Intratumoral adenovirus injection was associated with an increase in proinflammatory cytokines, CD45+ leukocytes, CD8+ lymphocytes, and F4/80+ macrophages, suggesting enhanced tumor immunogenicity. The proinflammatory effects of adenovirus on the tumor microenvironment led to expression of costimulatory signals on CD11c+ antigen-presenting cells and subsequent activation of T cells, thus breaking the tumor-induced peripheral tolerance. An increased number of CD8+ T cells specific for endogenous tumor antigens TRP-2 and gp100 was detected in combination-treated mice, indicating epitope spreading. Moreover, the majority of virus/T-cell–treated mice rejected the challenge of parental B16.F10 tumors, suggesting that systemic antitumor immunity was induced. In summary, we provide proof-of-mechanism data on combining adoptive T-cell therapy and adenovirotherapy for the treatment of cancer. Cancer Immunol Res; 3(8); 915–25. ©2015 AACR.


International Journal of Cancer | 2015

Oncolytic adenovirus and doxorubicin-based chemotherapy results in synergistic antitumor activity against soft-tissue sarcoma

Mikko Siurala; Simona Bramante; Lotta Vassilev; Mari Hirvinen; Suvi Parviainen; Siri Tähtinen; Kilian Guse; Vincenzo Cerullo; Anna Kanerva; Anja Kipar; Markus Vähä-Koskela; Akseli Hemminki

Despite originating from several different tissues, soft‐tissue sarcomas (STS) are often grouped together as they share mesenchymal origin and treatment guidelines. Also, with some exceptions, a common denominator is that when the tumor cannot be cured with surgery, the efficacy of current therapies is poor and new treatment modalities are thus needed. We have studied the combination of a capsid‐modified oncolytic adenovirus CGTG‐102 (Ad5/3‐D24‐GMCSF) with doxorubicin, with or without ifosfamide, the preferred first‐line chemotherapeutic options for most types of STS. We show that CGTG‐102 and doxorubicin plus ifosfamide together are able to increase cell killing of Syrian hamster STS cells over single agents, as well as upregulate immunogenic cell death markers. When tested in vivo against established STS tumors in fully immunocompetent Syrian hamsters, the combination was highly effective. CGTG‐102 and doxorubicin (without ifosfamide) resulted in synergistic antitumor efficacy against human STS xenografts in comparison with single agent treatments. Doxorubicin increased adenoviral replication in human and hamster STS cells, potentially contributing to the observed therapeutic synergy. In conclusion, the preclinical data generated here support clinical translation of the combination of CGTG‐102 and doxorubicin, or doxorubicin plus ifosfamide, for the treatment of STS, and provide clues on the mechanisms of synergy.


PLOS ONE | 2015

Favorable Alteration of Tumor Microenvironment by Immunomodulatory Cytokines for Efficient T-Cell Therapy in Solid Tumors

Siri Tähtinen; Saija Kaikkonen; Maiju Merisalo-Soikkeli; Susanna Grönberg-Vähä-Koskela; Anna Kanerva; Suvi Parviainen; Markus Vähä-Koskela; Akseli Hemminki

Unfavorable ratios between the number and activation status of effector and suppressor immune cells infiltrating the tumor contribute to resistance of solid tumors to T-cell based therapies. Here, we studied the capacity of FDA and EMA approved recombinant cytokines to manipulate this balance in favor of efficient anti-tumor responses in B16.OVA melanoma bearing C57BL/6 mice. Intratumoral administration of IFN-α2, IFN-γ, TNF-α, and IL-2 significantly enhanced the anti-tumor effect of ovalbumin-specific CD8+ T-cell (OT-I) therapy, whereas GM-CSF increased tumor growth in association with an increase in immunosuppressive cell populations. None of the cytokines augmented tumor trafficking of OT-I cells significantly, but injections of IFN-α2, IFN-γ and IL-2 increased intratumoral cytokine secretion and recruitment of endogenous immune cells capable of stimulating T-cells, such as natural killer and maturated CD11c+ antigen-presenting cells. Moreover, IFN-α2 and IL-2 increased the levels of activated tumor-infiltrating CD8+ T-cells concomitant with reduction in the CD8+ T-cell expression of anergy markers CTLA-4 and PD-1. In conclusion, intratumoral administration of IFN-α2, IFN-γ and IL-2 can lead to immune sensitization of the established tumor, whereas GM-CSF may contribute to tumor-associated immunosuppression. The results described here provide rationale for including local administration of immunostimulatory cytokines into T-cell therapy regimens. One appealing embodiment of this would be vectored delivery which could be advantageous over direct injection of recombinant molecules with regard to efficacy, cost, persistence and convenience.


OncoImmunology | 2017

Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy

Sadia Zafar; Suvi Parviainen; Mikko Siurala; Otto Hemminki; Riikka Havunen; Siri Tähtinen; Simona Bramante; Lotta Vassilev; Hongjie Wang; André Lieber; Silvio Hemmi; Tanja D. de Gruijl; Anna Kanerva; Akseli Hemminki

ABSTRACT Vaccination with dendritic cells (DCs), the most potent professional antigen-presenting cells in the body, is a promising approach in cancer immunotherapy. However, tumors induce immunosuppression in their microenvironment that suppresses and impairs the function of DCs. Therefore, human clinical trials with DC therapy have often been disappointing. To improve the therapeutic efficacy and to overcome the major obstacles of DC therapy, we generated a novel adenovirus, Ad3-hTERT-CMV-hCD40L, which is fully serotype 3 and expresses hCD40L for induction of antitumor immune response. The specific aim is to enhance DCs function. Data from a human cancer patient indicated that this capsid allows effective transduction of distant tumors through the intravenous route. Moreover, patient data suggested that virally produced hCD40L can activate DCs in situ. The virus was efficient in vitro and had potent antitumor activity in vivo. In a syngeneic model, tumors treated with Ad5/3-CMV-mCD40L virus plus DCs elicited greater antitumor effect as compared with either treatment alone. Moreover, virally coded CD40L induced activation of DCs, which in turn, lead to the induction of a Th1 immune response and increased tumor-specific T cells. In conclusion, Ad3-hTERT-CMV-hCD40L is promising for translation into human trials. In particular, this virus could enable successful dendritic cell therapy in cancer patients.


Molecular Therapy - Oncolytics | 2017

Oncolytic Adenoviruses Armed with Tumor Necrosis Factor Alpha and Interleukin-2 Enable Successful Adoptive Cell Therapy

Riikka Havunen; Mikko Siurala; Suvi Sorsa; Susanna Grönberg-Vähä-Koskela; Michael Behr; Siri Tähtinen; João Manuel Santos; Pauliina Karell; Juuso Rusanen; Dirk M. Nettelbeck; Anja Ehrhardt; Anna Kanerva; Akseli Hemminki

Adoptive cell therapy holds much promise in the treatment of cancer but results in solid tumors have been modest. The notable exception is tumor-infiltrating lymphocyte (TIL) therapy of melanoma, but this approach only works with high-dose preconditioning chemotherapy and systemic interleukin (IL)-2 postconditioning, both of which are associated with toxicities. To improve and broaden the applicability of adoptive cell transfer, we constructed oncolytic adenoviruses coding for human IL-2 (hIL2), tumor necrosis factor alpha (TNF-α), or both. The viruses showed potent antitumor efficacy against human tumors in immunocompromised severe combined immunodeficiency (SCID) mice. In immunocompetent Syrian hamsters, we combined the viruses with TIL transfer and were able to cure 100% of the animals. Cured animals were protected against tumor re-challenge, indicating a memory response. Arming with IL-2 and TNF-α increased the frequency of both CD4+ and CD8+ TILs in vivo and augmented splenocyte proliferation ex vivo, suggesting that the cytokines were important for T cell persistence and proliferation. Cytokine expression was limited to tumors and treatment-related signs of systemic toxicity were absent, suggesting safety. To conclude, cytokine-armed oncolytic adenoviruses enhanced adoptive cell therapy by favorable alteration of the tumor microenvironment. A clinical trial is in progress to study the utility of Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123) in human patients with cancer.


Cancer immunology research | 2017

Dasatinib changes immune cell profiles concomitant with reduced tumor growth in several murine solid tumor models

Can Hekim; Mette Ilander; Jun Yan; Erin Michaud; Richard Smykla; Markus Vähä-Koskela; Paula Savola; Siri Tähtinen; Leena Saikko; Akseli Hemminki; Panu E. Kovanen; Kimmo Porkka; Francis Y. Lee; Satu Mustjoki

Tyrosine kinase inhibitors (TKIs) are used therapeutically to inhibit aberrant oncokinase signaling in tumor cells. Several mouse solid-tumor models showed that the TKI dasatinib has off-target immunostimulatory effects, which could be important in the control of tumors. Dasatinib, a broad-range tyrosine kinase inhibitor, induces rapid mobilization of lymphocytes and clonal expansion of cytotoxic cells in leukemia patients. Here, we investigated whether dasatinib could induce beneficial immunomodulatory effects in solid tumor models. The effects on tumor growth and on the immune system were studied in four different syngeneic mouse models (B16.OVA melanoma, 1956 sarcoma, MC38 colon, and 4T1 breast carcinoma). Both peripheral blood (PB) and tumor samples were immunophenotyped during treatment. Although in vitro dasatinib displayed no direct cytotoxicity to B16 melanoma cells, a significant decrease in tumor growth was observed in dasatinib-treated mice compared with vehicle-treated group. Further, dasatinib-treated melanoma-bearing mice had an increased proportion of CD8+ T cells in PB, together with a higher amount of tumor-infiltrating CD8+ T cells. Dasatinib-mediated antitumor efficacy was abolished when CD4+ and CD8+ T cells were depleted with antibodies. Results were confirmed in sarcoma, colon, and breast cancer models, and in all cases mice treated daily with dasatinib had a significant decrease in tumor growth. Detailed immunophenotyping of tumor tissues with CyTOF indicated that dasatinib had reduced the number of intratumoral regulatory T cells in all tumor types. To conclude, dasatinib is able to slow down the tumor growth of various solid tumor models, which is associated with the favorable blood/tumor T-cell immunomodulation. The assessment of synergistic combinatorial therapies with other immunomodulatory drugs or targeted small-molecule oncokinase inhibitors is warranted in future clinical trials. Cancer Immunol Res; 5(2); 157–69. ©2017 AACR.


Molecular Therapy | 2016

Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma

Mikko Siurala; Riikka Havunen; Dipongkor Saha; Dave Lumen; Anu J. Airaksinen; Siri Tähtinen; Víctor Cervera-Carrascon; Simona Bramante; Suvi Parviainen; Markus Vähä-Koskela; Anna Kanerva; Akseli Hemminki

Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.


Molecular Therapy | 2016

Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus

Kristian Taipale; Ilkka Liikanen; Juuso Juhila; Riku Turkki; Siri Tähtinen; Matti Kankainen; Lotta Vassilev; Ari Ristimäki; Anniina Koski; Anna Kanerva; Iulia Diaconu; Vincenzo Cerullo; Markus Vähä-Koskela; Minna Oksanen; Nina Linder; Timo Joensuu; Johan Lundin; Akseli Hemminki

Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.


OncoImmunology | 2016

Syngeneic Syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting

Mikko Siurala; Markus Vähä-Koskela; Riikka Havunen; Siri Tähtinen; Simona Bramante; Suvi Parviainen; J. Michael Mathis; Anna Kanerva; Akseli Hemminki

ABSTRACT Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8+ T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

Collaboration


Dive into the Siri Tähtinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge