Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siril Skaret Bakke is active.

Publication


Featured researches published by Siril Skaret Bakke.


Journal of Immunology | 2014

Cholesterol Crystals Induce Complement-Dependent Inflammasome Activation and Cytokine Release

Eivind O. Samstad; Nathalie Niyonzima; Stig Nymo; Marie Hjelmseth Aune; Liv Ryan; Siril Skaret Bakke; Knut Tore Lappegård; Ole-Lars Brekke; John D. Lambris; Jan Kristian Damås; Eicke Latz; Tom Eirik Mollnes; Terje Espevik

Inflammation is associated with development of atherosclerosis, and cholesterol crystals (CC) have long been recognized as a hallmark of atherosclerotic lesions. CC appear early in the atheroma development and trigger inflammation by NLRP3 inflammasome activation. In this study we hypothesized whether CC employ the complement system to activate inflammasome/caspase-1, leading to release of mature IL-1β, and whether complement activation regulates CC-induced cytokine production. In this study we describe that CC activated both the classical and alternative complement pathways, and C1q was found to be crucial for the activation. CC employed C5a in the release of a number of cytokines in whole blood, including IL-1β and TNF. CC induced minimal amounts of cytokines in C5-deficient whole blood, until reconstituted with C5. Furthermore, C5a and TNF in combination acted as a potent primer for CC-induced IL-1β release by increasing IL-1β transcripts. CC-induced complement activation resulted in upregulation of complement receptor 3 (CD11b/CD18), leading to phagocytosis of CC. Also, CC mounted a complement-dependent production of reactive oxygen species and active caspase-1. We conclude that CC employ the complement system to induce cytokines and activate the inflammasome/caspase-1 by regulating several cellular responses in human monocytes. In light of this, complement inhibition might be an interesting therapeutic approach for treatment of atherosclerosis.


Science Translational Medicine | 2016

Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

Sebastian Zimmer; Alena Grebe; Siril Skaret Bakke; Niklas Bode; Bente Halvorsen; Thomas Ulas; Mona Skjelland; Dominic De Nardo; Larisa I. Labzin; Anja Kerksiek; Chris Hempel; Michael T. Heneka; Victoria Hawxhurst; Michael L. Fitzgerald; Jonel Trebicka; Ingemar Björkhem; Jan Åke Gustafsson; Marit Westerterp; Alan R. Tall; Samuel D. Wright; Terje Espevik; Joachim L. Schultze; Georg Nickenig; Dieter Lütjohann; Eicke Latz

The cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin facilitates atheroprotective mechanisms through oxysterol-mediated reprogramming of macrophages. Dissolving away cholesterol Cardiovascular disease resulting from atherosclerosis is one of the most common causes of death worldwide, and additional therapies for this disease are greatly needed because not all patients can be effectively treated with existing approaches. Cyclodextrin is a common FDA-approved substance that is already used as a solubilizing agent to improve delivery of various drugs. Now, Zimmer et al. have discovered that cyclodextrin can also solubilize cholesterol, removing it from plaques, dissolving cholesterol crystals, and successfully treating atherosclerosis in a mouse model. Because cyclodextrin is already known to be safe in humans, this drug is now a potential candidate for testing in human patients for the treatment of atherosclerosis. Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B–containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)–mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.


PLOS ONE | 2012

Electrical Pulse Stimulation of Cultured Human Skeletal Muscle Cells as an In Vitro Model of Exercise

Nataša Nikolić; Siril Skaret Bakke; Eili Tranheim Kase; Ida Rudberg; Ingeborg Flo Halle; Arild C. Rustan; G. Hege Thoresen; Vigdis Aas

Background and Aims Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes. Methods Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting. Results High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells. Conclusions Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.


Journal of Lipid Research | 2010

Metabolic switching of human myotubes is improved by n-3 fatty acids

Nina Pettersen Hessvik; Siril Skaret Bakke; K. Fredriksson; Mark V. Boekschoten; A. Fjorkenstad; G. Koster; Matthijs K. C. Hesselink; Sander Kersten; Eili Tranheim Kase; Arild C. Rustan; G. H. Thoresen

The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition (“fed”) to a high fatty acid, low glucose (“fasted”) condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.


Cell and Tissue Research | 2013

Are cultured human myotubes far from home

Vigdis Aas; Siril Skaret Bakke; Yuan Zeng Feng; Eili Tranheim Kase; Jørgen Jensen; Sudip Bajpeyi; G. Hege Thoresen; Arild C. Rustan

Satellite cells can be isolated from skeletal muscle biopsies, activated to proliferating myoblasts and differentiated into multinuclear myotubes in culture. These cell cultures represent a model system for intact human skeletal muscle and can be modulated ex vivo. The advantages of this system are that the most relevant genetic background is available for the investigation of human disease (as opposed to rodent cell cultures), the extracellular environment can be precisely controlled and the cells are not immortalized, thereby offering the possibility of studying innate characteristics of the donor. Limitations in differentiation status (fiber type) of the cells and energy metabolism can be improved by proper treatment, such as electrical pulse stimulation to mimic exercise. This review focuses on the way that human myotubes can be employed as a tool for studying metabolism in skeletal muscles, with special attention to changes in muscle energy metabolism in obesity and type 2 diabetes.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism.

Nina Pettersen Hessvik; Siril Skaret Bakke; Robert Smith; Aina Westrheim Ravna; Ingebrigt Sylte; Arild C. Rustan; G. Hege Thoresen; Eili Tranheim Kase

The aim of this study was to explore the effects of 22(S)-hydroxycholesterol (22(S)-HC) on lipid and glucose metabolism in human-derived cells from metabolic active tissues. Docking of T0901317 and 22(S)-HC showed that both substances fitted into the ligand binding domain of liver X receptors (LXR). Results show that while several lipogenic genes were induced by T0901317 in myotubes, HepG2 cells and SGBS cells, effect of 22(S)-HC varied more between cell types. In myotubes, most lipogenic genes were downregulated or unchanged by 22(S)-HC, whereas a more diverse pattern was found in HepG2 and SGBS cells. Treatment with 22(S)-HC induced sterol regulatory element binding transcription factor 1 in SGBS and HepG2 cells, but not in myotubes. Fatty acid synthase was downregulated by 22(S)-HC in myotubes, upregulated in SGBS and unchanged in HepG2 cells. De novo lipogenesis was increased by T0901317 in all cell models, whereas differently affected by 22(S)-HC depending on the cell type; decreased in myotubes and HepG2 cells, whereas increased in SGBS cells. Oxidation of linoleic acid was reduced by 22(S)-HC in all cell models while glucose uptake increased and tended to increase in myotubes and SGBS cells, respectively. Cholesterol efflux was unaffected by 22(S)-HC treatment. These results show that 22(S)-HC affects LXR-regulated processes differently in various cell types. Ability of 22(S)-HC to reduce lipogenesis and lipid accumulation in myotubes and hepatocytes indicate that 22(S)-HC might reduce lipid accumulation in non-adipose tissues, suggesting a potential role for 22(S)-HC or a similar LXR modulator in the treatment of type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2010

Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

Eva Corpeleijn; Nina Pettersen Hessvik; Siril Skaret Bakke; Klaus Levin; Ellen E. Blaak; G. Hege Thoresen; Michael Gaster; Arild C. Rustan

Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO(2) trapping system and measured under various conditions of extracellular OA (5 or 100 microM) and glucose (0.1 or 5.0 mM) and the absence or presence of mitochondrial uncoupling [carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)]. First, increased extracellular OA availability (5 vs. 100 microM) reduced ICL(OX) by 37%. No differences in total lipolysis were observed between low and high OA availability. Uncoupling with FCCP restored ICL(OX) to basal levels during high OA availability. Mitochondrial mass was positively related to ICL(OX), but only in myotubes from lean individuals. In all, a lower mitochondrial mass and lower ICL(OX) were related to a higher cell-associated OA accumulation. Second, myotubes established from obese T2D individuals showed reduced ICL(OX). ICL(OX) remained lower during uncoupling (P < 0.001), even with comparable mitochondrial mass, suggesting decreased mitochondrial function. Furthermore, the variation in ICL(OX) in vitro was significantly related to the in vivo fasting respiratory quotient of all subjects (P < 0.02). In conclusion, the rate of ICL(OX) is dependent on the availability of extracellular fatty acids and mitochondrial function rather than mitochondrial mass.


Archives of Physiology and Biochemistry | 2012

Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance.

Ingrid M.F. Gjelstad; Fred Haugen; Hanne L. Gulseth; Frode Norheim; Anneke Jans; Siril Skaret Bakke; Truls Raastad; Arnt Erik Tjønna; Ulrik Wisløff; Ellen E. Blaak; Ulf Risérus; Michael Gaster; Helen M. Roche; Kåre I. Birkeland; Christian A. Drevon

The perilipin proteins enclose intracellular lipid droplets. We describe the mRNA expression of the five perilipins in human skeletal muscle in relation to fatty acid supply, exercise and energy balance. We observed that all perilipins were expressed in skeletal muscle biopsies with the highest mRNA levels of perilipin 2, 4 and 5. Cultured myotubes predominantly expressed perilipin 2 and 3. In vitro, incubation of myotubes with fatty acids enhanced mRNA expression of perilipin 1, 2 and 4. In vivo, low fat diet increased mRNA levels of perilipin 3 and 4. Endurance training, but not strength training, enhanced the expression of perilipin 2 and 3. Perilipin 1 mRNA correlated positively with body fat mass, whereas none of the perilipins were associated with insulin sensitivity. In conclusion, all perilipins mRNAs were expressed in human skeletal muscle. Diet as well as endurance exercise modulated the expression of perilipins.


PLOS ONE | 2013

Remodeling of Oxidative Energy Metabolism by Galactose Improves Glucose Handling and Metabolic Switching in Human Skeletal Muscle Cells

Eili Tranheim Kase; Nataša Nikolić; Siril Skaret Bakke; Kaja Kamilla Bogen; Vigdis Aas; G. Hege Thoresen; Arild C. Rustan

Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments.


Biochimica et Biophysica Acta | 2012

Palmitic acid follows a different metabolic pathway than oleic acid in human skeletal muscle cells; lower lipolysis rate despite an increased level of adipose triglyceride lipase

Siril Skaret Bakke; Cedric Moro; Nataša Nikolić; Nina Pettersen Hessvik; P. M. Badin; L. Lauvhaug; K. Fredriksson; Matthijs K. C. Hesselink; Mark V. Boekschoten; Sander Kersten; Michael Gaster; G. H. Thoresen; Arild C. Rustan

Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance.

Collaboration


Dive into the Siril Skaret Bakke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terje Espevik

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nathalie Niyonzima

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge