Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siyuan Li is active.

Publication


Featured researches published by Siyuan Li.


Journal of Anatomy | 2008

Zonal variations in cytoskeletal element organization, mRNA and protein expression in the intervertebral disc

Siyuan Li; Victor Colin Duance; Emma Jane Blain

The intervertebral disc is important in maintaining flexibility and dissipating loads applied to the spine. The disc comprises a heterogeneous population of cells, including those of the nucleus pulposus and annulus fibrosus, which are diverse in phenotype, partly due to the different mechanical loads they experience. Several studies have implicated the cytoskeleton in mechanotransduction, but little characterization of the three major cytoskeletal elements – actin, tubulin and vimentin – in the intervertebral disc has been undertaken. In this study we show that there are differences in both the organization and the amounts of these cytoskeletal proteins across the regions of immature bovine intervertebral disc (nucleus pulposus and outer annulus fibrosus), which differs with skeletal maturity. These differences are likely to reflect the diverse mechanical characteristics of the disc regions, and the loads that they experience, i.e. tension in the annulus fibrosus and compression in the nucleus pulposus. Alterations to the organization and amount of cytoskeletal element proteins may change the ability of the cells to respond to mechanical signals, with a loss of tissue homeostasis, suggesting that the cytoskeleton has a potential role in intervertebral disc degeneration.


Journal of Zhejiang University-science B | 2008

Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect

Siyuan Li; J. Cao; Z. Shi; Jinghong Chen; Zengtie Zhang; Clare Elizabeth Hughes; Bruce Caterson

ObjectiveTo identify the relationship between T-2 toxin and Kashin-Beck disease (KBD), the effects of T-2 toxin on aggrecan metabolism in human chondrocytes and cartilage were investigated in vitro.MethodsChondrocytes were isolated from human articular cartilage and cultured in vitro. Hyaluronic acid (HA), soluble CD44 (sCD44), IL-1β and TNF-α levels in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). CD44 content in chondrocyte membrane was determined by flow cytometry (FCM). CD44, hyaluronic acid synthetase-2 (HAS-2) and aggrecanases mRNA levels in chondrocytes were determined using reverse transcription polymerase chain reaction (RT-PCR). Immunocytochemical method was used to investigate expressions of BC-13, 3-B-3(−) and 2-B-6 epitopes in the cartilage reconstructed in vitro.ResultsT-2 toxin inhibited CD44, HAS-2, and aggrecan mRNA expressions, but promoted aggrecanase-2 mRNA expression. Meanwhile, CD44 expression was found to be the lowest in the chondrocytes cultured with T-2 toxin and the highest in control plus selenium group. In addition, ELISA results indicated that there were higher sCD44, IL-1β and TNF-α levels in T-2 toxin group. Similarly, higher HA levels were also observed in T-2 toxin group using radioimmunoprecipitation assay (RIPA). Furthermore, using monoclonal antibodies BC-13, 3-B-3 and 2-B-6, strong positive immunostaining was found in the reconstructed cartilage cultured with T-2 toxin, whereas no positive staining or very weak staining was observed in the cartilage cultured without T-2 toxin. Selenium could partly inhibit the effects of T-2 toxin above.ConclusionT-2 toxin could inhibit aggrecan synthesis, promote aggrecanases and pro-inflammatory cytokines production, and consequently induce aggrecan degradation in chondrocytes. These will perturb metabolism balance between aggrecan synthesis and degradation in cartilage, inducing aggrecan loss in the end, which may be the initiation of the cartilage degradation.


World Journal of Gastroenterology | 2012

Increased expression of chondroitin sulphate proteoglycans in rat hepatocellular carcinoma tissues

Xiaoli Jia; Siyuan Li; Shuangsuo Dang; Yan-An Cheng; Xin Zhang; Wenjun Wang; Clare Elizabeth Hughes; Bruce Caterson

AIM To investigate the expression of chondroitin sulphate proteoglycans (CSPGs) in rat liver tissues of hepatocellular carcinoma (HCC). METHODS Thirty male Sprague Dawley rats were randomly divided into two groups: control group (n = 10) and HCC model group (n = 20). Rats in the HCC model groups were intragastrically administrated with 0.2% (w/v) N-diethylnitrosamine (DEN) every 5 d for 16 wk, whereas 0.9% (w/v) normal saline was administered to rats in the control group. After 16 wk from the initiation of experiment, all rats were killed and livers were collected and fixed in 4% (w/v) paraformaldehyde. All tissues were embedded in paraffin and sectioned. Histological staining (hematoxylin and eosin and Toluidine blue) was performed to demonstrate the onset of HCC and the content of sulphated glycosaminoglycan (sGAG). Immunohistochemical staining was performed to investigate the expression of chondroitin sulphate (CS)/dermatan sulphate (DS)-GAG, heparan sulphate (HS)-GAG, keratan sulphate (KS)-GAG in liver tissues. Furthermore, expression and distribution of CSPG family members, including aggrecan, versican, biglycan and decorin in liver tissues, were also immunohistochemically determined. RESULTS After 16 wk administration of DEN, malignant nodules were observed on the surface of livers from the HCC model group, and their hepatic lobule structures appeared largely disrupted under microscope. Toluidine blue staining demonstrated that there was an significant increase in sGAG content in HCC tissues when compared with that in the normal liver tissues from the control group [0.37 ± 0.05 integrated optical density per stained area (IOD/area) and 0.21 ± 0.01 IOD/area, P < 0.05]. Immunohistochemical studies demonstrated that this increased sGAG in HCC tissues was induced by an elevated expression of CS/DS (0.28 ± 0.02 IOD/area and 0.18 ± 0.02 IOD/area, P < 0.05) and HS (0.30 ± 0.03 IOD/area and 0.17 ± 0.02 IOD/area, P < 0.01) but not KS GAGs in HCC tissues. Further studies thereby were performed to investigate the expression and distribution of several CSPG components in HCC tissues, including aggrecan, versican, biglycan and decorin. Interestingly, there was a distinct distribution pattern for these CSPG components between HCC tissues and the normal tissues. Positive staining of aggrecan, biglycan and decorin was localized in hepatic membrane and/or pericellular matrix in normal liver tissues; however, their expression was mainly observed in the cytoplasm, cell membranes in hepatoma cells and/or pericellular matrix within HCC tissues. Semi-quantitative analysis indicated that there was a higher level of expression of aggrecan (0.43 ± 0.01 and 0.35 ± 0.03, P < 0.05), biglycan (0.32 ± 0.01 and 0.25 ± 0.01, P < 0.001) and decorin (0.29 ± 0.01 and 0.26 ± 0.01, P < 0.05) in HCC tissues compared with that in the normal liver tissues. Very weak versican positive staining was observed in hepatocytes near central vein in normal liver tissues; however there was an intensive versican distribution in fibrosis septa between the hepatoma nodules. Semi-quantitative analysis indicated that the positive rate of versican in hepatoma tissues from the HCC model group was much higher than that in the control group (33.61% and 21.28%, P < 0.05). There was no positive staining in lumican and keratocan, two major KSPGs, in either normal or HCC liver tissues. CONCLUSION CSPGs play important roles in the onset and progression of HCC, and may provide potential therapeutic targets and clinical biomarkers for this prevalent tumor in humans.


Journal of Zhejiang University-science B | 2010

Effects of moniliformin and selenium on human articular cartilage metabolism and their potential relationships to the pathogenesis of Kashin-Beck disease.

An Zhang; J. Cao; Bo Yang; Jinghong Chen; Zengtie Zhang; Siyuan Li; Q. Fu; Clare E. Hugnes; Bruce Caterson

ObjectiveTo investigate the effects of mycotoxin moniliformin (MON) on the metabolism of aggrecan and type II collagen in human chondrocytes in vitro and the relationship between MON and Kashin-Beck disease (KBD).MethodsHuman chondrocytes were isolated and cultured on bone matrix gelatin to form an artificial cartilage model in vitro with or without MON toxin. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of aggrecan and type II collagen in the cartilage was determined using immunocytochemical staining.ResultsMON toxin inhibited chondrocyte viability in dose-dependent and time-dependent manners. MON reduced aggrecan and type II collagen syntheses in the tissue-engineered cartilage. MON also increased the expression of matrix metalloproteinase-1 (MMP-1), MMP-13, BC4 epitopes, and CD44 in cartilages. However, the expression of 3B3(−) epitopes in cartilages was inhibited by MON. Selenium partially alleviated the damage of aggrecan induced by MON toxin.ConclusionMON toxin promoted the catabolism of aggrecan and type II collagen in human chondrocytes.


Cells Tissues Organs | 2012

The Effects of Mycotoxins and Selenium Deficiency on Tissue-Engineered Cartilage

Minling Lu; J. Cao; Fuqiang Liu; Siyuan Li; Jinghong Chen; Q. Fu; Zengtie Zhang; Jiayuan Liu; Mingxiu Luo; Jiali Wang; Jin Li; Bruce Caterson

Objective: To investigate the effects of 3 mycotoxins, deoxynivalenol (DON), nivalenol (NIV) and T-2 toxin, in the presence and absence of selenium (Se) on the metabolism of tissue-engineered cartilage to mimic conditions found in Kashin-Beck disease (KBD) environments. Materials and Methods: Chondrocytes were seeded onto bone matrix gelatin (BMG) to construct engineered cartilage. The 3 toxins were added to the culture media for 3 weeks followed by immunhistochemical analyses of collagens type II and X, aggrecan, matrix metalloproteinases 1 and 3 (MMP-1 and MMP-3), MMP inhibitors 1 and 3 (TIMP-1 and TIMP-3) and α2 macroglobulin (α2M). Results: Type II collagen was decreased while type X collagen was increased in response to DON, NIV and T-2 toxin. Aggrecan was reduced by all 3 mycotoxins. Compared with the control, the 3 toxins decreased the expression of α2M, TIMP-1 and TIMP-3, and increased the expression of MMP-1 and MMP-3. Se could partially inhibit the effects of DON, NIV and T-2 toxins. Conclusion: Under the low Se condition, the 3 mycotoxins produced procatabolic changes in cartilage resulting in the loss of aggrecan and type II collagen and promoted a hypertrophic phenotype of chondrocytes characterized by increasing type-X-collagen expression, enhancing the expression of MMPs, while weakening the TIMPs. Se could partially block the effects mentioned above. These results support the hypothesis that the combination of mycotoxin stress and Se deficiency would be the causative factors for KBD.


Glycoconjugate Journal | 2012

Proteoglycan metabolism, cell death and Kashin-Beck Disease

Siyuan Li; J. Cao; Bruce Caterson; Clare Elizabeth Hughes

Kashin-Beck Disease (KBD) is an endemic, chronic and degenerative osteoarthropathy principally occurring in children. The characteristic pathological change of KBD is chondrocyte necrosis in hyaline articular cartilage. Proteoglycans are one of the major components in the extracellular matrix of articular cartilage, and disrupted proteoglycan metabolism and loss of proteoglycans in articular cartilage from KBD patients has been observed. In this mini-review, we discuss the close relationship between chondrocyte death including necrosis and loss of proteoglycan, and its potential mechanism during KBD onset and development, which may provide new clues for KBD research.


Toxicology in Vitro | 2009

Butenolide induced cytotoxicity by disturbing the prooxidant-antioxidant balance, and antioxidants partly quench in human chondrocytes.

Z. Shi; J. Cao; Jinghong Chen; Siyuan Li; Zengtie Zhang; Bo Yang; Shuang-Qing Peng

Butenolide (BUT), a mycotoxin produced by Fusarium species, was detected often in corns or grains from endemic Kashin-Beck disease (KBD) areas in China. In this study, we evaluated the cytotoxicity of BUT on chondrocytes and the possible toxic mechanism with the aim of understanding the pathogenesis and of directing future therapeutic interventions for KBD. Exposure of human chondrocytes and engineered cartilage to high concentration of BUT (> 1 microg/ml) resulted in significant cytotoxicity, manifested by losses in cell viability and changes in cell morphology. BUT with high concentration (> 1 microg/ml) also induced significant oxidative damage to chondrocytes in vitro evidenced by increasing both lipid peroxidation and endogenous antioxidants. Furthermore, free radical scavenging agents, such as selenium (Se), vitamin C (VC) and vitamin E (VE), partly blocked BUT-induced oxidative damage. In conclusion, this finding indicates that BUT induces cytotoxicity to human chondrocytes, and the disturbance of prooxidant-antioxidant balance may play a pivotal role in BUT-induced injuries in chondrocytes. Moreover, Se, VC or VE can quench the toxic effects of BUT to a certain extent, which will possibly direct future therapeutic interventions against KBD.


Osteoarthritis and Cartilage | 2014

Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin-Beck disease.

Mingxiu Luo; J. Chen; Siyuan Li; H. Sun; Z. Zhang; Q. Fu; J. Li; Jiali Wang; Clare Elizabeth Hughes; Bruce Caterson; J. Cao

OBJECTIVES To identify changes in the expression patterns of enzymes involved in chondroitin sulfate (CS) glycosaminoglycan (GAG) metabolism in articular cartilage proteoglycan (PG) isolated from adolescent patients with Kashin-Beck disease (KBD). METHODS Samples of articular cartilage were divided into two groups: Control samples (from five normal children), and KBD samples (from five KBD children) aged 3-12 years old. The morphology and pathology of hand joint cartilage were examined by histochemical staining. The localization and expression patterns of enzymes involved in CS GAG metabolism (i.e., PAPS synthetase 2 (PAPSS2), PAPS transporter 1 (PAPST1), Carbohydrate (N-acetylgalactosamine 4-sulfate 6-O) sulfotransferases 15 (CHST15), Arylsulfatase B (ARSB) and N-acetylgalactosamine-6-sulfate sulfatase (GALNS)) were performed using immuno-histochemical analyses. Positive immunostaining in articular cartilage was semi-quantified. RESULTS Reduced aggrecan staining was observed in KBD samples compared with the control samples. The percentages of positive staining for the anabolic enzymes PAPSS2, PAPST1 and CHST15 in the upper and middle zones of KBD samples were significantly lower than that found in the Controls. In contrast, the percentages of positive staining in KBD samples for the catabolic enzymes ARSB and GALNS were significantly higher than the control samples. However, the staining for all of these GAG metabolism enzymes were hardly observed in the deep zones of KBD cartilage, suggesting that significant cell death and necrosis had occurred in this region. CONCLUSIONS Our results indicate that alterations of enzymes involved in articular cartilage CS GAG metabolism on PGs in the articular cartilage play an important role in the onset and pathogenesis of KBD in adolescent children.


Histochemistry and Cell Biology | 2013

The effect of beta-xylosides on the chondrogenic differentiation of mesenchymal stem cells

Siyuan Li; Anthony Joseph Hayes; Bruce Caterson; Clare Elizabeth Hughes

Chondroitin/dermatan sulphate (CS/DS) sulphation motifs on cell and extracellular matrix proteoglycans (PGs) within stem/progenitor cell niches are involved in modulating cell phenotype during the development of many musculoskeletal connective tissues. Here, we investigate the importance of CS/DS chains and their motifs in the chondrogenic differentiation of bone marrow mesenchymal stem cells (bMSCs), using p-nitrophenyl xyloside (PNPX) as a competitive acceptor of CS/DS substitution on PGs. Comparison of cultures grown in control chondrogenic medium, with those grown in the presence of PNPX showed that PNPX delayed the onset of chondrogenesis, characterised by cell rounding and aggregation into spheroidal beads. PNPX reduced gene expression of SOX-9, aggrecan and collagen type II, and caused reduced levels of collagen type II protein. PNPX-treated cultures also showed delayed expression of a native CS/DS sulphation motif epitope recognised by antibody 6C3. This epitope appeared associated with a range of PGs, particularly biglycan, and its close association was lost after PNPX treatment. Overall our data show that perturbation of PG glycosylation with CS/DS GAGs using PNPX significantly delays the onset of chondrogenic differentiation of bMSCs, highlighting the importance of CS/DS during the initial stages of chondrogenesis. The delayed expression of the CS/DS sulphation motif recognised by 6C3 suggests that this motif, in particular, may have early involvement in chondrogenesis. The mechanism(s) by which CS/DS chains on PGs contribute to early chondrogenic events is unknown; however, they may be involved in morphogenetic signalling through the capture and cellular presentation of soluble bioactive molecules (e.g. growth factors).


Biochemical Society Transactions | 2007

F-actin cytoskeletal organization in intervertebral disc health and disease

Siyuan Li; Victor Colin Duance; Emma Jane Blain

The cytoskeleton, which in most cell types, including the intervertebral disc described here, comprises microfilaments, microtubules and intermediate filaments, plays important functions in many fundamental cellular events, including cell division, motility, protein trafficking and secretion. The cytoskeleton is also critical for communication; for example, alterations to the architecture of the F-actin (filamentous actin) cytoskeletal networks can affect communication between the cells and the extracellular matrix, potentially compromising tissue homoeostasis. Although there are limited studies to date, this paper aims to review current knowledge on F-actin cytoskeletal element organization in intervertebral disc cells, how F-actin differs with pathology and its implications for mechanotransduction.

Collaboration


Dive into the Siyuan Li's collaboration.

Top Co-Authors

Avatar

J. Cao

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Q. Fu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Jinghong Chen

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Z. Shi

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Zengtie Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

J. Chen

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Z. Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Y. Yue

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Bo Yang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Jiali Wang

Xi'an Jiaotong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge