Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Smita Zinjarde is active.

Publication


Featured researches published by Smita Zinjarde.


Applied Microbiology and Biotechnology | 2009

Environmental and industrial applications of Yarrowia lipolytica

Ashok Bankar; Ameeta Ravi Kumar; Smita Zinjarde

Yarrowia lipolytica is a fungus that degrades hydrophobic substrates very efficiently. The fungus displays several important characteristics that have encouraged researchers to study various basic biological and biotechnological applications in detail. Although the organism has been used as model system for studying dimorphism, salt tolerance, heterologous protein expression, and lipid accumulation, there are no recent reviews on the environmental and industrial applications of this organism. Included here are applications in bioremediation of environments contaminated with aliphatic and aromatic compounds, organic pollutants, 2,4,6-trinitrotoluene, and metals. A variety of industrially important recent processes for the synthesis of β-hydroxy butyrate, l-dopa, and emulsifiers have also been reviewed. Production of unique inherent enzymes (inulinases, α-mannosidases), novel applications of esterases and lipases, and the use of the fungus for heterologous expression of biotechnologically relevant products have also been highlighted. The review while entailing a general overview focuses critically on some of the recent advances on the applications of this yeast. The examples cited here demonstrate the use of wild-type, mutant as well as genetically manipulated strains of Y. lipolytica for the development of different products, processes, and technologies. This also throws light on how a single organism can be versatile with respect to its metabolic abilities and how it can be exploited for a variety of purposes. This review will thus form a base for future developments in this field.


Bioresource Technology | 2002

Palm oil mill effluent treatment by a tropical marine yeast

N Oswal; P.M Sarma; Smita Zinjarde; Aditi Pant

Palm oil mill effluent (POME), from a factory site in India contained about 250,000 mg l(-1) chemical oxygen demand (COD), 11,000 mg l(-1) biochemical oxygen demand, 65 mg l(-1) total dissolved solids and 9000 mg l(-1) of chloroform-soluble material. Treatment of this effluent using Yarrowia lipolytica NCIM 3589, a marine hydrocarbon-degrading yeast isolated from Mumbai, India, gave a COD reduction of about 95% with a retention time of two days. Treatment with a chemical coagulant further reduced the COD and a consortium developed from garden soil clarified the effluent and adjusted the pH to between 6 and 7. The complete treatment reduced the COD content to 1500 mg l(-1) which is a 99% reduction from the original.


BMC Complementary and Alternative Medicine | 2011

Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants

Sudha P; Smita Zinjarde; Shobha Bhargava; Ameeta Ravi Kumar

BackgroundIndian medicinal plants used in the Ayurvedic traditional system to treat diabetes are a valuable source of novel anti-diabetic agents. Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post-prandial hyperglycemia via control of starch breakdown. In this study, seventeen Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on PPA (porcine pancreatic α-amylase). Preliminary phytochemical analysis of the lead extracts was performed in order to determine the probable constituents.MethodsAnalysis of the 126 extracts, obtained from 17 plants (Aloe vera (L.) Burm.f., Adansonia digitata L., Allium sativum L., Casia fistula L., Catharanthus roseus (L.) G. Don., Cinnamomum verum Persl., Coccinia grandis (L.) Voigt., Linum usitatisumum L., Mangifera indica L., Morus alba L., Nerium oleander L., Ocimum tenuiflorum L., Piper nigrum L., Terminalia chebula Retz., Tinospora cordifolia (Willd.) Miers., Trigonella foenum-graceum L., Zingiber officinale Rosc.) for PPA inhibition was initially performed qualitatively by starch-iodine colour assay. The lead extracts were further quantified with respect to PPA inhibition using the chromogenic DNSA (3, 5-dinitrosalicylic acid) method. Phytochemical constituents of the extracts exhibiting≥ 50% inhibition were analysed qualitatively as well as by GC-MS (Gas chromatography-Mass spectrometry).ResultsOf the 126 extracts obtained from 17 plants, 17 extracts exhibited PPA inhibitory potential to varying degrees (10%-60.5%) while 4 extracts showed low inhibition (< 10%). However, strong porcine pancreatic amylase inhibitory activity (> 50%) was obtained with 3 isopropanol extracts. All these 3 extracts exhibited concentration dependent inhibition with IC50 values, viz., seeds of Linum usitatisumum (540 μgml-1), leaves of Morus alba (1440 μgml-1) and Ocimum tenuiflorum (8.9 μgml-1). Acarbose as the standard inhibitor exhibited an IC50 (half maximal inhibitory concentration)value of 10.2 μgml-1. Phytochemical analysis revealed the presence of alkaloids, tannins, cardiac glycosides, flavonoids, saponins and steroids with the major phytoconstituents being identified by GC-MS.ConclusionsThis study endorses the use of these plants for further studies to determine their potential for type 2 diabetes management. Results suggests that extracts of Linum usitatisumum, Morus alba and Ocimum tenuiflorum act effectively as PPA inhibitors leading to a reduction in starch hydrolysis and hence eventually to lowered glucose levels.


Colloids and Surfaces B: Biointerfaces | 2009

Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589

P.S. Pimprikar; Swanand Joshi; Ameeta Ravi Kumar; Smita Zinjarde; Sulabha K. Kulkarni

Cell-associated gold nanoparticles and nanoplates were produced when varying number of Yarrowia lipolytica cells were incubated with different concentrations of chloroauric acid (HAuCl(4)) at pH 4.5. With 10(9)cells ml(-1) and 0.5 or 1.0 mM of the gold salt, the reaction mixtures developed a purple or golden red colour, respectively, and gold nanoparticles were synthesized. Nanoparticles of varying sizes were produced when 10(10)cells ml(-1) were incubated with 0.5, 1.0 or 2.0 mM chloroauric acid salt. With 3.0, 4.0 or 5.0 mM HAuCl(4), nanoplates were also observed. With 10(11)cells ml(-1) nanoparticles were synthesized with almost all the gold salt concentrations. The cell-associated particles were released outside when nanoparticle-loaded cells were incubated at low temperature (20 degrees C) for 48 h. With increasing salt concentrations and a fixed number of cells, the size of the nanoparticles progressively increased. On the other hand, with increasing cell numbers and a constant gold salt concentration, the size of nanoparticles decreased. These results indicate that by varying the number of cells and the gold salt concentration, a variety of nanoparticles and nanoplates can be synthesized. Fourier transform infrared (FTIR) spectroscopy revealed the possible involvement of carboxyl, hydroxyl and amide groups on the cell surfaces in nanoparticle synthesis.


Evidence-based Complementary and Alternative Medicine | 2011

Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro

Sudha Ponnusamy; Remya Ravindran; Smita Zinjarde; Shobha Bhargava; Ameeta Ravi Kumar

Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA) inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC50 values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL−1), Syzygium cumini seeds (42.1 and 4.1 μgmL−1), isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL−1) and Curcuma longa rhizome (0.16 μgmL−1). The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL−1), isopropanol extract from Murraya koenigii leaves (127 μgmL−1), acetone extracts from C. longa rhizome (7.4 μgmL−1) and Tribulus terrestris seeds (511 μgmL−1). Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds.


Evidence-based Complementary and Alternative Medicine | 2011

Antidiabetic Indian Plants: A Good Source of Potent Amylase Inhibitors

Menakshi Bhat; Smita Zinjarde; Shobha Bhargava; Ameeta Ravi Kumar; Bimba N. Joshi

Diabetes is known as a multifactorial disease. The treatment of diabetes (Type II) is complicated due to the inherent patho-physiological factors related to this disease. One of the complications of diabetes is post-prandial hyperglycemia (PPHG). Glucosidase inhibitors, particularly α-amylase inhibitors are a class of compounds that helps in managing PPHG. Six ethno-botanically known plants having antidiabetic property namely, Azadirachta indica Adr. Juss.; Murraya koenigii (L.) Sprengel; Ocimum tenuflorum (L.) (syn: Sanctum); Syzygium cumini (L.) Skeels (syn: Eugenia jambolana); Linum usitatissimum (L.) and Bougainvillea spectabilis were tested for their ability to inhibit glucosidase activity. The chloroform, methanol and aqueous extracts were prepared sequentially from either leaves or seeds of these plants. It was observed that the chloroform extract of O. tenuflorum; B. spectabilis; M. koenigii and S. cumini have significant α-amylase inhibitory property. Plants extracts were further tested against murine pancreatic, liver and small intestinal crude enzyme preparations for glucosidase inhibitory activity. The three extracts of O. tenuflorum and chloroform extract of M. koenigi showed good inhibition of murine pancreatic and intestinal glucosidases as compared with acarbose, a known glucosidase inhibitor.


Journal of Hazardous Materials | 2009

Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica.

Ashok Bankar; Ameeta Ravi Kumar; Smita Zinjarde

The removal of chromium (VI) ions from aqueous solutions by the biomass of two marine strains of Yarrowia lipolytica (NCIM 3589 and 3590) was studied with respect to pH, temperature, biomass, sea salt concentration, agitation speed, contact time and initial concentration of chromium (VI) ions. Maximum biosorption was observed at pH 1.0 and at a temperature of 35 degrees C. Increase in biomass and sea salts resulted in a decreased metal uptake. With an agitation speed of 130 rpm, equilibrium was attained within 2h. Under optimum conditions, biosorption was enhanced with increasing concentrations of Cr (VI) ions. NCIM 3589 and 3590 displayed a specific uptake of Cr (VI) ions of 63.73+/-1.3 mg g(-1) at a concentration of 950 ppm and 46.09+/-0.23 mg g(-1) at 955 ppm, respectively. Scatchard plot analysis revealed a straight line allowing the data to be fitted in the Langmuir model. The adsorption data obtained also fitted well to the Freundlich isotherm. The surface sequestration of Cr (VI) by Y. lipolytica was investigated with a scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) as well as with ED-X-ray fluorescence (ED-XRF). Fourier transform infrared (FTIR) spectroscopy revealed the involvement of carboxyl, hydroxyl and amide groups on the cell surfaces in chromium binding.


Marine Pollution Bulletin | 2002

Hydrocarbon degraders from tropical marine environments

Smita Zinjarde; Aditi Pant

Analysis of 20 samples of marine mud and water around Mumbai resulted in the isolation of 17 bacteria and yeasts all of which were able to degrade more than 10% of the supplied crude oil. The yeasts strains were important degraders of the aliphatic fraction of crude. All the isolated yeasts belonged to the genus Candida. Using biochemical tests these were identified as Candida parapsilosis, C. albicans, C. guilliermondii, Yarrowia lipolytica, C. tropicalis and C. intermedia. Y. lipolytica was the best degrader utilizing 78% of the aliphatic fraction of Bombay High crude oil. None of these isolates degraded the aromatic or ashphaltene fractions. All the isolates required aeration, nitrogen and phosphate supplementation for optimal degradation. Four out of the six yeasts are human pathogens.


Journal of Basic Microbiology | 2002

Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589

Smita Zinjarde; Aditi Pant

A tropical marine strain of Yarrowia lipolytica, NCIM 3589 produced emulsifier in the presence of alkanes or crude oil. The mode of alkane uptake in this organism was by attachment to large droplets. An emulsifier (lipid‐carbohydrate‐protein) complex was associated with the cell wall. This emulsifier increased the hydrophobicity of the cells during the growth phase. In the stationary phase, the organism produced the emulsifier extracellularly under conditions of carbon excess and nitrogen limitation. Other requirements for extracellular emulsifier production included an initial pH of 8.0 and the presence of sodium chloride at a concentration of 2 to 3% (342 to 513 mM). The cell‐associated and extracellular emulsifier was shown to have similar properties.


Fems Immunology and Medical Microbiology | 2011

Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters

Nadia Kazemi Pour; Devendra H. Dusane; Prashant K. Dhakephalkar; Farokh Rokhbakhsh Zamin; Smita Zinjarde; Balu A. Chopade

Fifty Acinetobacter isolates were obtained from urinary tract infections and urinary catheter samples. Analytical profile index assays identified 47 isolates as Acinetobacter baumannii and three as Acinetobacter lwoffii. Six A. baumannii isolates (A1-A6) displayed hydrophobicity indices >70%. Twenty isolates exhibited lectin activity. Biofilm formation by these isolates was compared with those with low hydrophobicity index values (A45-A50). Biofilms on different surfaces were confirmed by light microscopy, epifluorescence microscopy and by obtaining scanning electron microscope images. Biofilm production was maximal at 30 °C, pH 7.0 in a medium with 5.0 g L(-1) NaCl, and its efficiency was reduced on urinary catheter surfaces at sub-minimum inhibitory concentration concentrations of colistin. Plasmid-mediated antibiotic resistance was observed in selected isolates of A. baumannii and experiments of conjugation and transformation showed the occurrence of gene transfer. Plasmid curing was used to examine the function of plasmids. Five plasmids of A. baumannii A3 were cured but no differences were observed between wild-type and plasmid-cured strains with respect to the biofilm formation capabilities. The prevalence of A. baumannii strains with biofilm mode of growth could explain their ability to persist in clinical environments and their role in device-related infections.

Collaboration


Dive into the Smita Zinjarde's collaboration.

Top Co-Authors

Avatar

Ameeta Ravi Kumar

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Ameeta RaviKumar

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Ashok Bankar

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Devendra H. Dusane

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Aditi Pant

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Mugdha Apte

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Suresh Gosavi

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Faseela Hamza

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Mahesh Khot

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Pallavi Mohite

Savitribai Phule Pune University

View shared research outputs
Researchain Logo
Decentralizing Knowledge