Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where So-Young Rah is active.

Publication


Featured researches published by So-Young Rah.


Experimental and Molecular Medicine | 2006

Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes

Seon-Young Kim; Sang-Jin Kim; Byoung-Joo Kim; So-Young Rah; Sung Mo Chung; Mie-Jae Im; Uh-Hyun Kim

Doxorubicin (DOX) is one of the most potent anticancer drugs and induces acute cardiac arrhythmias and chronic cumulative cardiomyopathy. Though DOX-induced cardiotoxicity is known to be caused mainly by ROS generation, a disturbance of Ca2+ homeostasis is also implicated one of the cardiotoxic mechanisms. In this study, a molecular basis of DOX-induced modulation of intracellular Ca2+ concentration ([Ca2+]i) was investigated. Treatment of adult rat cardiomyocytes with DOX increased [Ca2+]i irrespectively of extracellular Ca2+, indicating DOX-mediated Ca2+ release from intracellular Ca2+ stores. The DOX-induced Ca2+ increase was slowly processed and sustained. The Ca2+ increase was inhibited by pretreatment with a sarcoplasmic reticulum (SR) Ca2+ channel blocker, ryanodine or dantrolene, and an antioxidant, α-lipoic acid or α-tocopherol. DOX-induced ROS generation was observed immediately after DOX treatment and increased in a time-dependent manner. The ROS production was significantly reduced by the pretreatment of the SR Ca2+ channel blockers and the antioxidants. Moreover, DOX-mediated activation of caspase-3 was significantly inhibited by the Ca2+ channel blockers and a-lipoic acid but not a-tocopherol. In addition, cotreatment of ryanodine with α-lipoic acid resulted in further inhibition of the casapse-3 activity. These results demonstrate that DOX-mediated ROS opens ryanodine receptor, resulting in an increase in [Ca2+]i and that the increased [Ca2+]i induces ROS production. These observations also suggest that DOX/ROS-induced increase of [Ca2+]i plays a critical role in damage of cardiomyocytes.


Journal of Biological Chemistry | 2010

Generation of Cyclic ADP-ribose and Nicotinic Acid Adenine Dinucleotide Phosphate by CD38 for Ca2+ Signaling in Interleukin-8-treated Lymphokine-activated Killer Cells

So-Young Rah; Mazhar Mushtaq; Tae-Sik Nam; Suhn Hee Kim; Uh-Hyun Kim

We have previously demonstrated that cyclic ADP-ribose (cADPR) is a calcium signaling messenger in interleukin 8 (IL-8)-induced lymphokine-activated killer (LAK) cells. In this study we examined the possibility that IL-8 activates CD38 to produce another messenger, nicotinic acid adenine dinucleotide phosphate (NAADP), in LAK cells, and we showed that IL-8 induced NAADP formation after cADPR production. These calcium signaling messengers were not produced when LAK cells prepared from CD38 knock-out mice were treated with IL-8, indicating that the synthesis of both NAADP and cADPR is catalyzed by CD38 in LAK cells. Application of cADPR to LAK cells induced NAADP production, whereas NAADP failed to increase intracellular cADPR levels, confirming that the production of cADPR precedes that of NAADP in IL-8-treated LAK cells. Moreover, NAADP increased intracellular Ca2+ signaling as well as cell migration, which was completely blocked by bafilomycin A1, suggesting that NAADP is generated in lysosome-related organelles after cADPR production. IL-8 or exogenous cADPR, but not NAADP, increased intracellular cAMP levels. cGMP analog, 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate, increased both cADPR and NAADP production, whereas the cAMP analog, 8-(4-chlorophenylthio)-cAMP, increased only NAADP production, suggesting that cAMP is essential for IL-8-induced NAADP formation. Furthermore, activation of Rap1, a downstream molecule of Epac, was required for IL-8-induced NAADP formation in LAK cells. Taken together, our data suggest that IL-8-induced NAADP production is mediated by CD38 activation through the actions of cAMP/Epac/protein kinase A/Rap1 in LAK cells and that NAADP plays a key role in Ca2+ signaling of IL-8-induced LAK cell migration.


Biochemical and Biophysical Research Communications | 2003

Increase of intracellular Ca2+ during ischemia/reperfusion injury of heart is mediated by cyclic ADP-ribose

Guang-Hua Xie; So-Young Rah; Kye Sook Yi; Myung-Kwan Han; Soo-Wan Chae; Mie-Jae Im; Uh-Hyun Kim

While the molecular mechanisms by which oxidants cause cytotoxicity are still poorly understood, disruption of Ca(2+) homeostasis appears to be one of the critical alterations during the oxidant-induced cytotoxic process. Here, we examined the possibility that oxidative stress may alter the metabolism of cyclic ADP-ribose (cADPR), a potent Ca(2+)-mobilizing second messenger in the heart. Isolated heart perfused by Langendorff technique was subjected to ischemia/reperfusion injury and endogenous cADPR level was determined using a specific radioimmunoassay. Following ischemia/reperfusion injury, a significant increase in intracellular cADPR level was observed. The elevation of cADPR content was closely correlated with the increase in ADP-ribosyl cyclase activity. Inclusion of oxygen free radical scavengers, 2,2,6,6-tetramethyl-1-piperidinyloxy and mannitol, in the reperfusate prevented the ischemia/reperfusion-induced increases in cADPR level and the ADP-ribosyl cyclase activity. Exposure of isolated cardiomyocytes to t-butyl hydroperoxide increased the ADP-ribosyl cyclase activity, cADPR level, and intracellular Ca(2+) concentration ([Ca(2+)](i)) and consequently resulting in cell lethal damage. The oxidant-induced elevation of [Ca(2+)](i) as well as cell lethal damage was blocked by a cADPR antagonist, 8-bromo-cADPR. These results provide evidence for involvement of cADPR and its producing enzyme in alteration of Ca(2+) homeostasis during the ischemia/reperfusion injury of the heart.


Journal of Biological Chemistry | 2011

Connexin-43 Hemichannels Mediate Cyclic ADP-ribose Generation and Its Ca2+-mobilizing Activity by NAD+/Cyclic ADP-ribose Transport

Eun-Kyung Song; So-Young Rah; Young-Rae Lee; Chae-Hwa Yoo; Yu-Ri Kim; Ji-Hyun Yeom; Kwang-Hyun Park; Jong-Suk Kim; Uh-Hyun Kim; Myung-Kwan Han

Background: The ADP-ribosyl cyclase CD38 produces cyclic ADP-ribose from NAD+ in the extracellular space. Cyclic ADP-ribose induces intracellular Ca2+ mobilization. Results: We demonstrate that connexin 43 hemichannels import cyclic ADP-ribose to the intracellular target ryanodine receptor. Conclusion: Connexin 43 hemichannels mediate the extracellular production and Ca2+-mobilizing action of cyclic ADP-ribose. Significance: We show that connexin 43 hemichannels resolve the topological hindrance between CD38 and ryanodine receptor. The ADP-ribosyl cyclase CD38 whose catalytic domain resides in outside of the cell surface produces the second messenger cyclic ADP-ribose (cADPR) from NAD+. cADPR increases intracellular Ca2+ through the intracellular ryanodine receptor/Ca2+ release channel (RyR). It has been known that intracellular NAD+ approaches ecto-CD38 via its export by connexin (Cx43) hemichannels, a component of gap junctions. However, it is unclear how cADPR extracellularly generated by ecto-CD38 approaches intracellular RyR although CD38 itself or nucleoside transporter has been proposed to import cADPR. Moreover, it has been unknown what physiological stimulation can trigger Cx43-mediated export of NAD+. Here we demonstrate that Cx43 hemichannels, but not CD38, import cADPR to increase intracellular calcium through RyR. We also demonstrate that physiological stimulation such as Fcγ receptor (FcγR) ligation induces calcium mobilization through three sequential steps, Cx43-mediated NAD+ export, CD38-mediated generation of cADPR and Cx43-mediated cADPR import in J774 cells. Protein kinase A (PKA) activation also induced calcium mobilization in the same way as FcγR stimulation. FcγR stimulation-induced calcium mobilization was blocked by PKA inhibition, indicating that PKA is a linker between FcγR stimulation and NAD+/cADPR transport. Cx43 knockdown blocked extracellular cADPR import and extracellular cADPR-induced calcium mobilization in J774 cells. Cx43 overexpression in Cx43-negative cells conferred extracellular cADPR-induced calcium mobilization by the mediation of cADPR import. Our data suggest that Cx43 has a dual function exporting NAD+ and importing cADPR into the cell to activate intracellular calcium mobilization.


Journal of Biological Chemistry | 2007

Association of CD38 with Nonmuscle Myosin Heavy Chain IIA and Lck Is Essential for the Internalization and Activation of CD38

So-Young Rah; Kwang-Hyun Park; Tae-Sik Nam; Sang-Jin Kim; Hyuntae Kim; Mie-Jae Im; Uh-Hyun Kim

Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca2+ concentration ([Ca2+]i), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca2+]i, and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38.


International Immunopharmacology | 2014

The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis.

Sun-Young Nam; Cha-Kwon Chung; Jun-Ho Seo; So-Young Rah; Hyung-Min Kim; Hyun-Ja Jeong

In the present study, the therapeutic effect and underlying mechanism of α-pinene (α-PN) in the ovalbumin (OVA)-sensitized allergic rhinitis (AR) model were investigated. Our results showed that pretreatment with α-PN caused a decrease in clinical symptoms, including a decrease in the number of nasal, eye, and ear rubs, and spleen weight in the OVA-sensitized mice. The level of interleukin (IL)-4 was decreased on the spleen tissue of α-PN treated mice. Pretreatment with α-PN significantly decreased levels of nasal immunoglobulin E. Protein levels of tumor necrosis factor-α, intercellular adhesion molecule-1, and macrophage inflammatory protein-2 were decreased by the administration of α-PN in the nasal mucosa of the OVA-sensitized mice. The increased numbers of eosinophils and mast cells infiltrating the nasal mucosal tissue of mice with AR were decreased following oral administration of α-PN. Post-treatment with α-PN 1h after OVA challenge also resulted in a significant reduction of clinical symptoms and IgE levels. In addition, the expression and phosphorylation of receptor-interacting protein 2 (RIP2) and IκB kinase (IKK)-β and activation of nuclear factor-κB (NF-κB), and caspase-1 were all increased in the activated human mast cell line, HMC-1 cells, however, increased activations of RIP2, IKK-β, NF-κB, and caspase-1 were inhibited by treatment with α-PN. Taken together, we suggest that α-PN is a promising anti-allergic agent and may be useful in the clinical management of AR.


Molecular Brain | 2016

Impaired learning and memory in CD38 null mutant mice.

Somi Kim; TaeHyun Kim; Hye-Ryeon Lee; Eun-Hye Jang; Hyun-Hee Ryu; Minkyung Kang; So-Young Rah; Juyoun Yoo; Bolam Lee; Jae-Ick Kim; Chae Seok Lim; Sang Jeong Kim; Uh-Hyun Kim; Yong-Seok Lee; Bong-Kiun Kaang

CD38 is an enzyme that catalyzes the formation of cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate, both of which are involved in the mobilization of Ca2+ from intracellular stores. Recently, CD38 has been shown to regulate oxytocin release from hypothalamic neurons. Importantly, CD38 mutations are associated with autism spectrum disorders (ASD) and CD38 knockout (CD38−/−) mice display ASD-like behavioral phenotypes including deficient parental behavior and poor social recognition memory. Although ASD and learning deficits commonly co-occur, the role of CD38 in learning and memory has not been investigated. We report that CD38−/− mice show deficits in various learning and memory tasks such as the Morris water maze, contextual fear conditioning, and the object recognition test. However, either long-term potentiation or long-term depression is not impaired in the hippocampus of CD38−/− mice. Our results provide convincing evidence that CD38−/− mice show deficits in various learning and memory tasks including spatial and non-spatial memory tasks. Our data demonstrate that CD38 is critical for regulating hippocampus-dependent learning and memory without modulating synaptic plasticity.


Experimental and Molecular Medicine | 2006

Discovery of a small-molecule inhibitor for kidney ADP-ribosyl cyclase: Implication for intracellular calcium signal mediated by cyclic ADP-ribose

Tae-Sik Nam; Sung Hoon Choi; So-Young Rah; Seon-Young Kim; Won Jang; Mie-Jae Im; Ho Jeong Kwon; Uh-Hyun Kim

ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca2+-mobilizing second messenger, cyclic ADP- ribose (cADPR), from β-NAD+. A prototype of mammalian ADPR-cyclases is a lymphocyte antigen CD38. Accumulating evidence indicates that ADPR-cyclases other than CD38 are expressed in various cells and organs. In this study, we discovered a small molecule inhibitor of kidney ADPR-cyclase. This compound inhibited kidney ADPR-cyclase activity but not CD38, spleen, heart or brain ADPR-cyclase activity in vitro. Characterization of the compound in a cell-based system revealed that an extracellular calcium-sensing receptor (CaSR)- mediated cADPR production and a later long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i) in mouse mesangial cells were inhibited by the pre-treatment with this compound. In contrast, the compound did not block CD3/TCR-induced cADPR production and the increase of [Ca2+]i in Jurkat T cells, which express CD38 exclusively. The long-lasting Ca2+ signal generated by both receptors was inhibited by pre-treatment with an antagonistic cADPR derivative, 8-Br-cADPR, indicating that the Ca2+ signal is mediated by the ADPR-cyclse metabolite, cADPR. Moreover, among structurally similar compounds tested, the compound inhibited most potently the cADPR production and Ca2+ signal induced by CaSR. These findings provide evidence for existence of a distinct ADPR-cyclase in the kidney and basis for the development of tissue specific inhibitors.


Archives of Microbiology | 2007

Membrane cholesterol is required for activity of Vibrio vulnificus cytolysin

Hong-Nu Yu; Young-Rae Lee; Kwang-Hyun Park; So-Young Rah; Eun-Mi Noh; Eun-Kyung Song; Myung-Kwan Han; Byeong-Soo Kim; Sung-Ho Lee; Jong-Suk Kim

Vibrio vulnificus cytolysin (VVC) forms a pore in the plasma membrane and induces cytolysis of various cells including erythrocytes, neutrophil and endothelial cells. The cytolytic activity of VVC is inhibited by exogenously added cholesterol, suggesting that membrane cholesterol might be required for VVC cytolytic activity. However, there is no direct evidence that membrane cholesterol is involved in VVC-induced cytolysis. Herein we demonstrate that membrane cholesterol is required for binding of VVC to the plasma membrane. Membrane cholesterol depletion with methyl-β-cyclodextrin inhibited VVC-induced K+ release, 2-deoxy glucose release and Ca2+ influx, which are indicators of VVC pore formation. The cholesterol depletion-induced blockage of VVC cytolysis was due to the inhibition of VVC binding to membrane. These findings suggest that interaction with cholesterol is required for activity of VVC.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Seminal CD38 is a pivotal regulator for fetomaternal tolerance

Byung-Ju Kim; Yun-Min Choi; So-Young Rah; Dae-Ryoung Park; Seon-Ah Park; Yun-Jo Chung; Seung-Moon Park; Jong Kwan Park; Kyu Yun Jang; Uh-Hyun Kim

Significance In natural matings, semen delivers spermatozoa and immunoregulatory fluids to the female reproductive tract. Here, a soluble form of CD38 (sCD38) is shown to play an important role in facilitating maternal immune tolerance against the fetus by inducing the development of uterine tolerogenic DCs and forkhead box P3+ (Foxp3+) regulatory T cells. Deficiency of sCD38 in seminal fluid increased the rates of loss of allogeneic fetuses, and this loss was rescued by a direct injection of recombinant sCD38 into the uterus. Thus, seminal sCD38 acts as a pivotal immune suppressor for establishing maternal immune tolerance against the fetus. sCD38 could potentially be used to prevent failed pregnancies. A successful pregnancy depends on a complex process that establishes fetomaternal tolerance. Seminal plasma is known to induce maternal immune tolerance to paternal alloantigens, but the seminal factors that regulate maternal immunity have yet to be characterized. Here, we show that a soluble form of CD38 (sCD38) released from seminal vesicles to the seminal plasma plays a crucial role in inducing tolerogenic dendritic cells and CD4+ forkhead box P3+ (Foxp3+) regulatory T cells (Tregs), thereby enhancing maternal immune tolerance and protecting the semiallogeneic fetus from resorption. The abortion rate in BALB/c females mated with C57BL/6 Cd38−/− males was high compared with that in females mated with Cd38+/+ males, and this was associated with a reduced proportion of Tregs within the CD4+ T-cell pool. Direct intravaginal injection of sCD38 to CBA/J pregnant mice at preimplantation increased Tregs and pregnancy rates in mice under abortive sonic stress from 48 h after mating until euthanasia. Thus, sCD38 released from seminal vesicles to the seminal plasma acts as an immunoregulatory factor to protect semiallogeneic fetuses from maternal immune responses.

Collaboration


Dive into the So-Young Rah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwang-Hyun Park

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Myung-Kwan Han

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Tae-Sik Nam

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Seon-Young Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong-Suk Kim

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge