Sofia A. Wikström
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sofia A. Wikström.
Oecologia | 2006
Sofia A. Wikström; María Björk Steinarsdóttir; Lena Kautsky; Henrik Pavia
The success of introduced species is often attributed to release from co-evolved enemies in the new range and a subsequent decreased allocation to defense (EICA), but these hypotheses have rarely been evaluated for systems with low host-specificity of enemies. Here, we compare herbivore utilization of the brown seaweed, Fucusevanescens, and its coexisting competitors both in its native and new ranges, to test certain predictions derived from these hypotheses in a system dominated by generalist herbivores. While F. evanescens was shown to be a preferred host in its native range, invading populations supported a less diverse herbivore fauna and it was less preferred in laboratory choice experiments with important herbivores, when compared to co-occurring seaweeds. These results are consistent with the enemy release hypothesis, despite the fact that the herbivore communities in both regions were mainly composed of generalist species. However, in contrast to the prediction of EICA, analysis of anti-grazing compounds indicated a higher allocation to defense in introduced compared to native F.evanescens. The results suggest that the invader is subjected to less intense enemy control in the new range, but that this is due to an increased allocation to defense rather than release from specialized herbivores. This indicates that increased resistance to herbivory might be an important strategy for invasion success in systems dominated by generalist herbivores.
Oecologia | 2004
Sofia A. Wikström; Henrik Pavia
It has been proposed that seaweed secondary metabolites, e.g. brown algal phlorotannins, may have an ecologically important function as a chemical defence against epiphytes, by acting against colonisation of epiphytic organisms. We tested whether the low epiphytic abundance on the invasive brown seaweed Fucus evanescens, compared to the congeneric F. vesiculosus, is due to a more effective chemical defence against epiphyte colonisation. A field survey of the distribution of the common fouling organism Balanus improvisus (Cirripedia) showed that the abundance was consistently lower on F. evanescens than on F. vesiculosus. However, contrary to expectations, results from experimental studies indicated that F. vesiculosus has a more effective anti-settlement defence than F. evanescens. In settlement experiments with intact fronds of the two Fucus species, both species deterred settlement by barnacle larvae, but settlement was lower on F. vesiculosus both in choice and no-choice experiments. Phlorotannins from F. vesiculosus also had a stronger negative effect on larval settlement and were active at a lower concentration than those from F. evanescens. The results show that Fucus phlorotannins have the potential to inhibit settlement of invertebrate larvae, but that settlement inhibition cannot explain the lower abundance of the barnacle Balanus improvisus on F. evanescens compared to F. vesiculosus. Assessment of barnacle survival in the laboratory and in the field showed that this pattern could instead be attributed to a higher mortality of newly settled barnacles. Observation suggests that the increased mortality was due to detachment of young barnacles from the seaweed surface. This shows that the antifouling mechanism of F. evanescens acts on post-settlement stages of B. improvisus.
Biological Invasions | 2004
Sofia A. Wikström; Lena Kautsky
Fucus evanescens is a brown alga of arctic origin that has invaded European coasts. The epiphytic community of F. evanescens in southern Sweden was compared with that of the native Fucus vesiculosus, to examine to what extent an invading seaweed can modify local biodiversity. F. evanescens was much less fouled than F. vesiculosus, supporting both less biomass and fewer species of epiphytes. Multivariate analysis of the most common epiphyte taxa showed that the epiphytic community composition of F. evanescens was not entirely separated from that of F. vesiculosus, but host species contributed significantly to explain the variation in community composition. The biomass of free-living invertebrates was also lower on F. evanescens, although the pattern differed between taxonomic groups. While the biomass of amphipods was lower on F. evanescens, there was no significant difference in biomass of isopods or gastropods between the Fucus species. The good correlation between biomass of epiphytes and free-living animals suggests that the epiphytes play an important role in providing a suitable habitat for many species of free-living epifauna. The study shows that the invasion of F. evanescens affects the environmental conditions for many species associated with the Fucus community but that the direct effect on biodiversity is probably low.
Aquatic Ecology | 2011
Joakim P. Hansen; Sofia A. Wikström; Hanna Axemar; Lena Kautsky
This study explores: (1) whether the abundance of macroinvertebrates differs between macrophytes differing in both morphological complexity and tolerance to nutrient enrichment; (2) whether the distribution of invertebrates between macrophytes is due to active habitat choice; and (3) whether invertebrates prefer structurally complex to simple macrophytes. Macroinvertebrate abundance was compared between two common soft-bottom plants of the Baltic Sea that are tolerant to eutrophication, Myriophyllum spicatum and Potamogeton pectinatus, and one common plant that is sensitive to eutrophication, Chara baltica. Both field sampling and habitat choice experiments were conducted. We recorded higher total macroinvertebrate abundance on the structurally complex M. spicatum than on the more simply structured P. pectinatus and C. baltica, but found no difference in macroinvertebrate abundance between P. pectinatus and C. baltica. In accordance with the field results, our experiment indicated that the crustacean Gammarus oceanicus actively chose M. spicatum over the other macrophytes. Besides, we found that G. oceanicus actively preferred complex to simply structured artificial plants, indicating that the animal distribution was at least partly driven by differences in morphological complexity between plant species. In contrast, the gastropod Theodoxus fluviatilis did not make an active habitat choice between the plants. Our findings suggest that human-induced changes in vegetation composition can affect the faunal community. Increased abundance of structurally complex macrophytes, for example, M. spicatum, can result in increased abundance of macroinvertebrates, particularly mobile arthropods that may actively choose a more structurally complex macrophyte.
Biological Invasions | 2006
Ove Eriksson; Sofia A. Wikström; Åsa Eriksson; Regina Lindborg
Invasion of native habitats by alien or generalist species is recognized worldwide as one of the major causes behind species decline and extinction. One mechanism determining community invasibility, i.e. the susceptibility of a community to invasion, which has been supported by recent experimental studies, is species richness and functional diversity acting as barriers to invasion. We used Scandinavian semi-natural grasslands, exceptionally species-rich at small spatial scales, to examine this mechanism, using three grassland generalists and one alien species as experimental invaders. Removal of two putative functional groups, legumes and dominant non-legume forbs, had no effect on invasibility except a marginally insignificant effect of non-legume forb removal. The amount of removed biomass and original plot species richness had no effect on invasibility. Actually, invasibility was high already in the unmanipulated community, leading us to further examine the relationship between invasion and propagule pressure, i.e. the inflow of seeds into the community. Results from an additional experiment suggested that these species-rich grasslands are effectively open to invasion and that diversity may be immigration driven. Thus, species richness is no barrier to invasion. The high species diversity is probably in itself a result of the community being highly invasible, and species have accumulated at small scales during centuries of grassland management.
Journal of Applied Phycology | 2013
Christina Halling; Sofia A. Wikström; Gustaf Lilliesköld-Sjöö; Erik Mörk; Elisabeth Lundsør; Giuseppe C. Zuccarello
Seaweed farming has a crucial role in the development of future sustainable mariculture. In the same time, spreading of introduced species or genotypes from farms may threaten local ecosystems. We analyzed a molecular marker (mitochondrial cox2-3 spacers) from cultivated and wild specimen of the widely farmed seaweeds Eucheuma and Kappaphycus, collected in Zanzibar on the African east coast where commercial farming was introduced in 1989. Genotypes of presumed Asian origin were found growing on coral reefs and drifting in seagrass meadows, indicating that genotypes introduced for farming have established successfully in the wild in Zanzibar. Only a very low number of genotypes, all of Asian origin, were found in the farms. This indicates a low accessible gene pool, which can limit the capacity for adaptation to changed conditions and disease resistance in the farming system. African genotypes were found in a few sites, showing the potential for future farming of native strains. The ecological effects of the Asian genotypes introduced to coral reefs should also be further investigated in order to evaluate the risk connected with further introductions of new foreign strains.
Oecologia | 2008
Veijo Jormalainen; Sofia A. Wikström; Tuija Honkanen
Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.
Oecologia | 2010
Helena Forslund; Sofia A. Wikström; Henrik Pavia
Non-indigenous species (NIS) are important components of global change, and in order to manage such species it is important to understand which factors affect their success. Interactions with enemies in the new range have been shown to be important for the outcome of introductions, but thus far most studies on NIS–enemy interactions have considered only specialist herbivores in terrestrial systems. Here we present the results from the first biogeographic study that compares herbivore resistance between populations in the native and new region of a non-indigenous seaweed. We show that low consumption of the non-indigenous seaweed by a generalist herbivore is caused by higher chemical defence levels and herbivore resistance in the new range—and not by the failure of the herbivore to recognise the non-indigenous seaweed as a suitable host. Since most seaweed–herbivore interactions are dominated by generalist herbivores, this pattern could be common in marine communities. Our results also reveal that traits used to predict the invasive potential of species, such as their resistance to enemies, can change during the invasion process, but not always in the way predicted by dominant theories.
Oecologia | 2012
Sofia A. Wikström; Helmut Hillebrand
Increased biological diversity due to invasion by non-indigenous species (NIS) is a global phenomenon with potential effects on trophic interactions and ecosystem processes in the invaded habitat. We assessed the effects of resource availability and invasion of three non-indigenous invertebrate grazers (two crustaceans and a snail) on secondary production, relative dominance of NIS grazers and resource depletion in experimental freshwater mesocosms. The relative dominance of NIS grazers increased with increasing initial resource availability, although the effect was largest for one of the three species. The effect was due to the fact that all the included non-indigenous grazers were able to expand their populations quickly in response to resource addition. For the most dominating species, the increased grazer diversity due to invasion in turn resulted in higher production of grazer biomass and a more efficient depletion of the periphyton resource. The effect was largest at high initial resource availability, where NIS dominance was most pronounced. Our results show that an invasion-induced increase in species diversity can increase resource depletion and consequently production, but that the effect depends on identity of the introduced species. The results also suggest that properties of the recipient system, such as resource availability, can modulate ecosystem effects of NIS by affecting invader success and dominance.
Blood Coagulation & Fibrinolysis | 1993
S. Lenfors; L. Marberg; Sofia A. Wikström; U. Jonsson; A. Westin Eriksson; D. Gustafsson
A model for thrombolysis in rats was developed. Repeated, focal external heating was applied to the carotid artery which leads to the development of a cyclic blood flow with slow, steady decreases followed by abrupt increases. When this cyclic blood flow stops spontaneously, the entire arterial segment (∼10 mm) can be demarcated with snares to create an arterial thrombus of fixed size, with a platelet-rich head and an erythrocyte-rich tail. The usefulness of the model was tested by evaluating the thrombolysis induced by a low dose of recombinant tissue-type plasminogen activator (rt-PA) alone and rt-PA in combination with standard heparin and recombinant hirudin. Re-canalization of the artery was measured as blood flow and as the residual mI-radioactivity in the artery at the end of the experiment, resulting from IMI-fibrinogen incorporated during the formation of the thrombus. Both blood flow and l2sI-activity measurements show that hirudin, but not heparin in combination with rt-PA, significantly improves thrombolysis, which is in accordance with previous experimental findings. It is concluded that the model, with a thrombus resembling the thrombus found in man after coronary occlusion, enables complicated experiments with thrombolysis frequently performed only in large animals to be performed in rats.