Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solaf M. Elsayed is active.

Publication


Featured researches published by Solaf M. Elsayed.


Journal of Clinical Investigation | 2011

Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics

Claudia Dafinger; Max C. Liebau; Solaf M. Elsayed; Yorck Hellenbroich; Eugen Boltshauser; Georg Christoph Korenke; Francesca Fabretti; Andreas R. Janecke; Inga Ebermann; Gudrun Nürnberg; Peter Nürnberg; Hanswalter Zentgraf; Friederike Koerber; Klaus Addicks; Ezzat Elsobky; Thomas Benzing; Bernhard Schermer; Hanno J. Bolz

Joubert syndrome (JBTS) is characterized by a specific brain malformation with various additional pathologies. It results from mutations in any one of at least 10 different genes, including NPHP1, which encodes nephrocystin-1. JBTS has been linked to dysfunction of primary cilia, since the gene products known to be associated with the disorder localize to this evolutionarily ancient organelle. Here we report the identification of a disease locus, JBTS12, with mutations in the KIF7 gene, an ortholog of the Drosophila kinesin Costal2, in a consanguineous JBTS family and subsequently in other JBTS patients. Interestingly, KIF7 is a known regulator of Hedgehog signaling and a putative ciliary motor protein. We found that KIF7 co-precipitated with nephrocystin-1. Further, knockdown of KIF7 expression in cell lines caused defects in cilia formation and induced abnormal centrosomal duplication and fragmentation of the Golgi network. These cellular phenotypes likely resulted from abnormal tubulin acetylation and microtubular dynamics. Thus, we suggest that modified microtubule stability and growth direction caused by loss of KIF7 function may be an underlying disease mechanism contributing to JBTS.


American Journal of Human Genetics | 2013

WNT1 Mutations in Families Affected by Moderately Severe and Progressive Recessive Osteogenesis Imperfecta

Shawna M. Pyott; Thao Tran; Dru F. Leistritz; Melanie Pepin; Nancy J. Mendelsohn; Renee Temme; Bridget A. Fernandez; Solaf M. Elsayed; Ezzat Elsobky; Ishwar C. Verma; Sreelata Nair; Emily H. Turner; Joshua D. Smith; Gail P. Jarvik; Peter H. Byers

Osteogenesis imperfecta (OI) is a heritable disorder that ranges in severity from death in the perinatal period to an increased lifetime risk of fracture. Mutations in COL1A1 and COL1A2, which encode the chains of type I procollagen, result in dominant forms of OI, and mutations in several other genes result in recessive forms of OI. Here, we describe four recessive-OI-affected families in which we identified causative mutations in wingless-type MMTV integration site family 1 (WNT1). In family 1, we identified a homozygous missense mutation by exome sequencing. In family 2, we identified a homozygous nonsense mutation predicted to produce truncated WNT1. In family 3, we found a nonsense mutation and a single-nucleotide duplication on different alleles, and in family 4, we found a homozygous 14 bp deletion. The mutations in families 3 and 4 are predicted to result in nonsense-mediated mRNA decay and the absence of WNT1. WNT1 is a secreted signaling protein that binds the frizzled receptor (FZD) and the coreceptor low-density lipoprotein-receptor-related protein 5 (LRP5). Biallelic loss-of-function mutations in LRP5 result in recessive osteoporosis-pseudoglioma syndrome with low bone mass, whereas heterozygous gain-of-function mutations result in van Buchem disease with elevated bone density. Biallelic loss-of-function mutations in WNT1 result in a recessive clinical picture that includes bone fragility with a moderately severe and progressive presentation that is not easily distinguished from dominant OI type III.


Genetics in Medicine | 2016

The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care

Brian T. Wilson; Zornitza Stark; Ruth E. Sutton; Sumita Danda; Alka V. Ekbote; Solaf M. Elsayed; Louise Gibson; Judith A. Goodship; Andrew P. Jackson; Wee Teik Keng; Mary D. King; Emma McCann; Toshino Motojima; Jennifer E. Murray; Taku Omata; Daniela T. Pilz; Kate Pope; Katsuo Sugita; Susan M. White; Ian Wilson

Purpose:Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established.Methods:One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians.Results and Conclusion:We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses.Genet Med 18 5, 483–493.


Journal of Human Genetics | 2008

Mutational analysis of ATP7B gene in Egyptian children with Wilson disease: 12 novel mutations

Tawhida Y Abdel-Ghaffar; Solaf M. Elsayed; Ezzat Elsobky; Janine Büttner; Hartmut Schmidt

AbstractThe aim of this work was to study the mutations within ATP7B in Egyptian children with Wilson disease and to evaluate any potential correlation between genotype and phenotype in this cohort. The study consisted of 48 children with Wilson disease from 32 independent families. The 21 exons of the ATP7Bgene were amplified in a thermal cycler. Direct sequencing of the amplified polymerase chain reaction (PCR) products was performed by cycle sequencing using fluorescent dye terminators in an automatic ABI sequencer. Thirty-one different mutations in 96 chromosomes were detected (19 missense, three nonsense, seven frameshift deletions, and two splice-site mutations). Of these, 12 mutations have not been previously reported. The p.N1270S, p.C703Y, IVS18-2A > G, p.R1319X, c.2304-2305insC, and p.H1069Q were present in 7.8%, 6.2%, 6.2%, 6.2%, 4.7%, and 4.7%, respectively, of studied chromosomes in independent families. One patient was homozygous for both p.N1270S and p.T1434M mutations. Frameshift and nonsense mutations were found in 50% of patients with disease onset ≤8 years compared with only 26% in patients with onset >8 years. Despite mutation heterogeneity in Egyptian children, genotype-phenotype correlation analysis seems to be promising in this population, as many patients carry homozygous mutations, a situation that mandates a larger-scale population screening to identify the carrier rate in this community.


BMC Pediatrics | 2011

Phenotypic and Genetic Characterization of a Cohort of Pediatric Wilson Disease Patients

Tawhida Y. Abdel Ghaffar; Solaf M. Elsayed; Suzan Elnaghy; Ahmed Shadeed; Ezzat Elsobky; Hartmut Schmidt

BackgroundIn Egypt, Wilson disease seems to be under diagnosed and clinical data on large cohorts are limited. The aim of this study is to highlight the clinical, laboratory and genetic characteristics of this disease in our pediatric population as well as to report our experience with both treatment options and outcome.MethodsThe study included 77 patients from 50 unrelated families (62 were followed up for a mean period of 58.9 ± 6.4 months and 27 were asymptomatic siblings). Data were collected retrospectively by record analysis and patient interviews. Diagnosis was confirmed by sequencing of the ATP7B gene in 64 patientsResultsOur patients had unique characteristics compared to other populations. They had a younger age of onset (median: 10 years), higher prevalence of Kayser-Fleischer rings (97.6% in the symptomatic patients), low ceruloplasmin (93.5%), high rate of parental consanguinity (78.9%) as well as a more severe course. 71.42% of those on long term D-penicillamine improved or were stable during the follow up with severe side effects occurring in only 11.5%. Preemptive treatment with zinc monotherapy was an effective non-toxic alternative to D-penicillamine. Homozygous mutations were found in 85.7%, yet limited by the large number of mutations detected, it was difficult to find genotype-phenotype correlations. Missense mutations were the most common while protein-truncating mutations resulted in a more severe course with higher incidence of acute liver failure and neurological symptoms.ConclusionsEgyptian children with Wilson disease present with early Kayser-Fleischer rings and early onset of liver and neurological disease. The mutational spectrum identified differs from that observed in other countries. The high rate of homozygous mutations (reflecting the high rate of consanguinity) may potentially offer further insights on genotype-phenotype correlation


American Journal of Human Genetics | 2016

Mutations in CDC45, Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis

Aimée L. Fenwick; Maciej Kliszczak; Fay Cooper; Jennie E. Murray; Luis Sanchez-Pulido; Stephen R.F. Twigg; Anne Goriely; Simon J. McGowan; Kerry A. Miller; Indira B. Taylor; Clare V. Logan; Sevcan Tug Bozdogan; Sumita Danda; J. Dixon; Solaf M. Elsayed; Ezzat Elsobky; Alice Gardham; Mariëtte J.V. Hoffer; Marije Koopmans; Donna M. McDonald-McGinn; Gijs W.E. Santen; Ravi Savarirayan; Deepthi De Silva; Olivier Vanakker; Steven A. Wall; Louise C. Wilson; Ozge Ozalp Yuregir; Elaine H. Zackai; Chris P. Ponting; Andrew P. Jackson

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Immunity & Ageing | 2009

Phenotype of apoptotic lymphocytes in children with Down syndrome

Solaf M. Elsayed; Ghada M. Elsayed

BackgroundDown syndrome (DS) is the most common and best-known chromosomal disorder and is associated with several other pathologic conditions including immunodeficiency which makes a significant contribution to morbidity and mortality. Various immunological theories and observations to explain the predisposition of individuals with DS to various infections have been published, one of which is increased apoptotic cells.AimThe aim of this study was to identify the effect of apoptosis on both types of cells of specific immune response (T and B lymphocytes) in children with DS using Annexin V staining of phosphatidyserine (PS) as a specific marker of early apoptosis.Subjects and methodsThe study included 17 children with karyotypically ascertained DS (7 males and 10 females). Their ages ranged from 4 months to 14 years with mean age of 5.7 ± 4.35 years. Seventeen age and sex matched healthy children were included in the study as controls. Patients or controls with infections were excluded from the study. Complete blood picture, immunophenotyping, analysis of apoptosis using Annexin V was done at National cancer Institute to all children included in this study.ResultsAlthough CBC, differential count, relative and absolute number of CD3+ and CD16+ did not show significant differences between DS children and control group, the relative and the absolute size of apoptotic CD3+ T lymphocytes, and the relative size of apoptotic CD19+ B lymphocytes were significantly higher in DS children than in controls. On the other hand, no significant difference was detected as regards the absolute size of CD19+ B lymphocytes in DS children and in controlsConclusionour finding of increased early apoptotic cells (especially T cells) in DS children may emphasize the fact that the function of cells- and not their number- is main mechanism responsible for the impairment of the immune system in DS children and may further add to the known fact that cellular immunity is more severely affected than humoral immunity in these children. Further studies on apoptotic cellular phenotype in larger number of DS are needed


European Journal of Human Genetics | 2014

Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations

Solaf M. Elsayed; Raoul Heller; Michaela Thoenes; Maha S. Zaki; Daniel Swan; Ezzat Elsobky; Christine Zühlke; Inga Ebermann; Gudrun Nürnberg; Peter Nürnberg; Hanno J. Bolz

Although many genes have been identified for the autosomal recessive cerebellar ataxias (ARCAs), several patients are unlinked to the respective loci, suggesting further genetic heterogeneity. We combined homozygosity mapping and exome sequencing in a consanguineous Egyptian family with congenital ARCA, mental retardation and pyramidal signs. A homozygous 5-bp deletion in SPTBN2, the gene whose in-frame mutations cause autosomal dominant spinocerebellar ataxia type 5, was shown to segregate with ataxia in the family. Our findings are compatible with the concept of truncating SPTBN2 mutations acting recessively, which is supported by disease expression in homozygous, but not heterozygous, knockout mice, ataxia in Beagle dogs with a homozygous frameshift mutation and, very recently, a homozygous SPTBN2 nonsense mutation underlying infantile ataxia and psychomotor delay in a human family. As there was no evidence for mutations in 23 additional consanguineous families, SPTBN2-related ARCA is probably rare.


Pediatric Neurology | 2012

Inherited Thrombophilia in Pediatric Ischemic Stroke: An Egyptian Study

Hamed M. Shatla; Hoda Y. Tomoum; Solaf M. Elsayed; Rasha H. Aly; Rania H. Shatla; Mona A. Ismail; Naglaa A. El-Ghany; Arsanios I. Fakhry; Nasser A. Abd Allah; Egin Yonca; Akar M. Nejat

Pediatric stroke is relatively uncommon, with often subtle clinical presentations. Numerous predisposing risk factors can be both inherited and acquired, including cardiac disease, vascular abnormalities, infectious diseases, collagen tissue diseases, inborn errors of metabolism, anticardiolipin antibody, lupus anticoagulant, deficiencies of protein C, protein S, antithrombin, or plasminogen, and prothrombotic mutations. We explored risk factors, clinical features, and neuroimaging among Egyptian children with ischemic stroke, and estimated the prevalence of inherited thrombophilia. We included 20 children with ischemic stroke, recruited from the Pediatric Neurology Outpatient Clinic (Ain Shams University). Basic clinical evaluations for stroke and genotyping for factor V 1691 G-A (factor V Leiden), prothrombin 20210 G-A mutations, and methylenetetrahydrofolate reductase 677 C-T polymorphisms were performed using real-time polymerase chain reaction, with fluorescent melting curve detection analysis. Ten patients (50%) manifested methylenetetrahydrofolate reductase polymorphisms (six homozygotes and four heterozygotes). Heterozygous factor V Leiden was present in five (25%), whereas prothrombin mutation was present in only one (5%). Five patients (25%) manifested combined prothrombotic abnormalities. Thirteen demonstrated evidence of inherited thrombophilic disorder; 25% manifested more than one mutation. For appropriate risk assessment, even in the presence of overt acquired thrombotic risk factors, physicians should request complete thrombophilia screening for patients with stroke.


Orphanet Journal of Rare Diseases | 2011

Cholestasis in patients with Cockayne syndrome and suggested modified criteria for clinical diagnosis

Tawhida Y. Abdel Ghaffar; Ezzat Elsobky; Solaf M. Elsayed

BackgroundCockayne syndrome is a rare autosomal recessive neurodegenerative disease characterized by low-to-normal birth weight; growth failure; brain dysmyelination with calcium deposits, cutaneous photosensitivity; pigmentary retinopathy, cataract, and sensorineural hearing loss. To the best of our knowledge, cholestatic liver disease was not previously reported in these patients.AimTo highlight the presence of cholestasis and liver dysfunction in this group of patients and to suggest modified criteria for clinical diagnosis.MethodsThe study included nine patients with Cockayne from four different families (five males and four females) in which Cockayne was suspected clinically. In all patients chromosomal breakage studies revealed mild (45%) to moderate (60%) increase in frequency of chromatid and chromosome gaps and breaks versus 25% in normal controls. Diagnosis was confirmed by DNA repair assay.ResultsDuring routine follow up of these patients, seven of them had evident liver affection ranging from mild elevation in liver enzymes to cholestatic liver disease and liver cell failure. The attacks were recurrent in two patients and were sometimes preceded by infection. The attack may lead to deterioration of neurological and/or liver condition. It may end in liver cell failure that either recovers completely or may lead to death.Conclusionsliver disease could be considered common in Egyptian patients with Cockayne with the cholestatic form being the most evident. The syndrome should be included in the list of causes of cholestatic liver disease. Chromosomal breakage study and positive family history should be included as major criteria for clinical diagnosis of Cockayne especially in a population like ours where consanguineous marriage is very high and molecular testing and UV sensitivity tests are considered unaffordable.

Collaboration


Dive into the Solaf M. Elsayed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge