Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solange Costa is active.

Publication


Featured researches published by Solange Costa.


Mutagenesis | 2010

Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial

Lykke Forchhammer; Clara Johansson; Steffen Loft; Lennart Möller; Roger W. L. Godschalk; Sabine A.S. Langie; George D. D. Jones; Rachel W. L. Kwok; Andrew R. Collins; Amaya Azqueta; David H. Phillips; Osman Sozeri; Maciej Stępnik; Jadwiga Palus; Ulla Vogel; Håkan Wallin; Michael N. Routledge; Catherine Handforth; Alessandra Allione; Giuseppe Matullo; João Paulo Teixeira; Solange Costa; Patrizia Riso; Marisa Porrini; Peter Møller

The comet assay has become a popular method for the assessment of DNA damage in biomonitoring studies and genetic toxicology. However, few studies have addressed the issue of the noted inter-laboratory variability of DNA damage measured by the comet assay. In this study, 12 laboratories analysed the level of DNA damage in monocyte-derived THP-1 cells by either visual classification or computer-aided image analysis of pre-made slides, coded cryopreserved samples of cells and reference standard cells (calibration curve samples). The reference standard samples were irradiated with ionizing radiation (0-10 Gy) and used to construct a calibration curve to calculate the number of lesions per 10(6) base pair. All laboratories detected dose-response relationships in the coded samples irradiated with ionizing radiation (1.5-7 Gy), but there were overt differences in the level of DNA damage reported by the different laboratories as evidenced by an inter-laboratory coefficient of variation (CV) of 47%. Adjustment of the primary comet assay end points by a calibration curve prepared in each laboratory reduced the CV to 28%, a statistically significant reduction (P < 0.05, Levenes test). A large fraction of the inter-laboratory variation originated from differences in image analysis, whereas the intra-laboratory variation was considerably smaller than the variation between laboratories. In summary, adjustment of primary comet assay results by reference standards reduces inter-laboratory variation in the level of DNA damage measured by the alkaline version of the comet assay.


Toxicology | 2008

Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde

Solange Costa; Carla Costa; Susana Silva; Olga Mayan; Luís Santos; Jorge Gaspar; João Paulo Teixeira

Formaldehyde (FA) is a chemical traditionally used in pathology and anatomy laboratories as a tissue preservative. Several epidemiological studies of occupational exposure to FA have indicated an increased risk of nasopharyngeal cancers in industrial workers, embalmers and pathology anatomists. There is also a clear evidence of nasal squamous cell carcinomas from inhalation studies in the rat. The postulated mode of action for nasal tumours in rats was considered biologically plausible and considered likely to be relevant to humans. Based on the available data IARC, the International Agency for Research on Cancer, has recently classified FA as a human carcinogen. Although the in vitro genotoxic as well as the in vivo carcinogenic potentials of FA are well documented in mammalian cells and in rodents, evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting thus remains to be more documented. To evaluate the genetic effects of long-term occupational exposure to FA a group of 30 Pathological Anatomy laboratory workers was tested for a variety of biological endpoints, cytogenetic tests (micronuclei, MN; sister chromatid exchange, SCE) and comet assay. The level of exposure to FA was evaluated near the breathing zone of workers, time weighted average of exposure was calculated for each subject. The association between the biomarkers and polymorphic genes of xenobiotic metabolising and DNA repair enzymes was also assessed. The mean level of exposure was 0.44+/-0.08ppm (0.04-1.58ppm). MN frequency was significantly higher (p=0.003) in the exposed subjects (5.47+/-0.76) when compared with controls (3.27+/-0.69). SCE mean value was significantly higher (p<0.05) among the exposed group (6.13+/-0.29) compared with control group (4.49+/-0.16). Comet assay data showed a significant increase (p<0.05) of TL in FA-exposed workers (60.00+/-2.31) with respect to the control group (41.85+/-1.97). A positive correlation was found between FA exposure levels and MN frequency (r=0.384, p=0.001) and TL (r=0.333, p=0.005). Regarding the genetic polymorphisms studied, no significant effect was found on the genotoxic endpoints. The results of the present biomonitoring study emphasize the need to develop safety programs.


Environment International | 2013

Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles.

Vanessa Valdiglesias; Carla Costa; Gözde Kiliç; Solange Costa; Eduardo Pásaro; Blanca Laffon; João Paulo Teixeira

Zinc oxide nanoparticles (ZnO NPs) are one of the most abundantly used nanomaterials in consumer products and biomedical applications. As a result, human exposure to these NPs is highly frequent and they have become an issue of concern to public health. Although toxicity of ZnO NPs has been extensively studied and they have been shown to affect many different cell types and animal systems, there is a significant lack of toxicological data for ZnO NPs on the nervous system, especially for human neuronal cells and tissues. In this study, the cytotoxic and genotoxic effects of ZnO NPs on human SHSY5Y neuronal cells were investigated under different exposure conditions. Results obtained by flow cytometry showed that ZnO NPs do not enter the neuronal cells, but their presence in the medium induced cytotoxicity, including viability decrease, apoptosis and cell cycle alterations, and genotoxicity, including micronuclei production, H2AX phosphorylation and DNA damage, both primary and oxidative, on human neuronal cells in a dose- and time-dependent manner. Free Zn(2+) ions released from the ZnO NPs were not responsible for the viability decrease, but their role on other types of cell damage cannot be ruled out. The results obtained in this work contribute to increase the knowledge on the genotoxic and cytotoxic potential of ZnO NPs in general, and specifically on human neuronal cells, but further investigations are required to understand the action mechanism underlying the cytotoxic and genotoxic effects observed.


Forensic Science International | 2002

Chimpanzee homologous of human Y specific STRs: A comparative study and a proposal for nomenclature

Leonor Gusmão; Annabel González-Neira; Cíntia Alves; M.V. Lareu; Solange Costa; António Amorim; Angel Carracedo

Eleven Y specific microsatellites, previously studied in humans, were typed for fragment length and sequenced in chimpanzees (Pan troglodytes). The primers described by Ayub et al. (Nucleic Acids Res. 28, 2000, 2) for amplifying DYS434, DYS435, DYS436, DYS437, DYS438, DYS439 and those described by White et al. (Genomics, 57, 1999, 433) for GATA A10, A7.1, A7.2, C4, and H4, were used to amplify DNA samples from chimpanzees. Primers described for Y GATA A4 were found to amplify the same region as reported for DYS439. Moreover, the GATA A4 forward primer only matches the repeat flanking region in 14 of the 28bp, being responsible for a very weak amplification. Therefore, this system was not included in this study. The analysis of the repeat and sequence structure observed in chimpanzee and human Y chromosomes allowed evolutionary comparisons as well as the basis for improving Y STR nomenclature and therefore, a unified nomenclature for these novel STRs is proposed to the scientific community following ISFG recommendations.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2014

Integrating health on air quality assessment — review report on health risks of two major european outdoor air pollutants: PM and NO

Solange Costa; Joana Ferreira; Carlos Silveira; Carla Costa; Diogo Lopes; Helder Relvas; C. Borrego; Peter Roebeling; Ana Isabel Miranda; João Paulo Teixeira

Quantifying the impact of air pollution on the public’s health has become an increasingly critical component in policy discussion. Recent data indicate that more than 70% of the world population lives in cities. Several studies reported that current levels of air pollutants in urban areas are associated with adverse health risks, namely, cardiovascular diseases and lung cancer. IARC recently classified outdoor air pollution and related particulate matter (PM) as carcinogenic to humans. Despite the air quality improvements observed over the last few years, there is still continued widespread exceedance within Europe, particularly regarding PM and nitrogen oxides (NOx). The European Air Quality Directive 2008/50/EC requires Member States to design appropriate air quality plans for zones where air quality does not comply with established limit values. However, in most cases, air quality is only quantified using a combination of monitored and modeled data and no health impact assessment is carried out. An integrated approach combining the effects of several emission abatement measures on air quality, impacts on human health, and associated implementation costs enables an effective cost–benefit analysis and an added value to the decision-making process. Hence, this review describes the basic steps and tools for integrating health into air quality assessment (health indicators, exposure-response functions). In addition, consideration is given to two major outdoor pollutants: PM and NO2. A summary of the health metrics used to assess the health impact of PM and NO2 and recent epidemiologic data are also described.


Mutagenesis | 2012

Inter-laboratory variation in DNA damage using a standard comet assay protocol

Lykke Forchhammer; Clara Ersson; Steffen Loft; Lennart Möller; Roger W. L. Godschalk; Frederik J. Van Schooten; George D. D. Jones; Jennifer A. Higgins; Marcus S. Cooke; Vilas Mistry; Mahsa Karbaschi; Andrew R. Collins; Amaya Azqueta; David H. Phillips; Osman Sozeri; Michael N. Routledge; Kirsty Nelson-Smith; Patrizia Riso; Marisa Porrini; Giuseppe Matullo; Alessandra Allione; Maciej Stępnik; Magdalena Komorowska; João Paulo Teixeira; Solange Costa; L.A. Corcuera; Adela López de Cerain; Blanca Laffon; Vanessa Valdiglesias; Peter Møller

There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratorys own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.


Mutagenesis | 2013

An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells

Clara Ersson; Peter Møller; Lykke Forchhammer; Steffen Loft; Amaya Azqueta; Roger W. L. Godschalk; Frederik-Jan van Schooten; George D. D. Jones; Jennifer A. Higgins; Marcus S. Cooke; Vilas Mistry; Mahsa Karbaschi; David H. Phillips; Osman Sozeri; Michael N. Routledge; Kirsty Nelson-Smith; Patrizia Riso; Marisa Porrini; Giuseppe Matullo; Alessandra Allione; Maciej Stępnik; Magdalena Ferlińska; João Paulo Teixeira; Solange Costa; L.A. Corcuera; Adela López de Cerain; Blanca Laffon; Vanessa Valdiglesias; Andrew R. Collins; Lennart Möller

The alkaline comet assay is an established, sensitive method extensively used in biomonitoring studies. This method can be modified to measure a range of different types of DNA damage. However, considerable differences in the protocols used by different research groups affect the inter-laboratory comparisons of results. The aim of this study was to assess the inter-laboratory, intra-laboratory, sample and residual (unexplained) variations in DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites measured by the comet assay by using a balanced Latin square design. Fourteen participating laboratories used their own comet assay protocols to measure the level of DNA strand breaks and FPG-sensitive sites in coded samples containing peripheral blood mononuclear cells (PBMC) and the level of DNA strand breaks in coded calibration curve samples (cells exposed to different doses of ionising radiation) on three different days of analysis. Eleven laboratories found dose-response relationships in the coded calibration curve samples on two or three days of analysis, whereas three laboratories had technical problems in their assay. In the coded calibration curve samples, the dose of ionising radiation, inter-laboratory variation, intra-laboratory variation and residual variation contributed to 60.9, 19.4, 0.1 and 19.5%, respectively, of the total variation. In the coded PBMC samples, the inter-laboratory variation explained the largest fraction of the overall variation of DNA strand breaks (79.2%) and the residual variation (19.9%) was much larger than the intra-laboratory (0.3%) and inter-subject (0.5%) variation. The same partitioning of the overall variation of FPG-sensitive sites in the PBMC samples indicated that the inter-laboratory variation was the strongest contributor (56.7%), whereas the residual (42.9%), intra-laboratory (0.2%) and inter-subject (0.3%) variations again contributed less to the overall variation. The results suggest that the variation in DNA damage, measured by comet assay, in PBMC from healthy subjects is assay variation rather than variation between subjects.


Journal of Trace Elements in Medicine and Biology | 2016

Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

Vanessa Valdiglesias; Natalia Fernández-Bertólez; Gözde Kiliç; Carla Costa; Solange Costa; Sónia Fraga; Maria João Bessa; Eduardo Pásaro; João Paulo Teixeira; Blanca Laffon

Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.


Journal of Toxicology and Environmental Health | 2012

Metal(Loid) Levels in Biological Matrices from Human Populations Exposed to Mining Contamination—Panasqueira Mine (Portugal)

Solange Costa; Susana Silva; Alan Walter; James F. Ranville; Ana Sousa; Carla Costa; Marta Isabel Correia Coelho; Julia García-Lestón; M. Ramiro Pastorinho; Blanca Laffon; Eduardo Pásaro; Chris F. Harrington; Andrew M. Taylor; João Paulo Teixeira

Mining activities may affect the health of miners and communities living near mining sites, and these health effects may persist even when the mine is abandoned. During mining processes various toxic wastes are produced and released into the surrounding environment, resulting in contamination of air, drinking water, rivers, plants, and soils. In a geochemical sampling campaign undertaken in the Panasqueira Mine area of central Portugal, an anomalous distribution of several metals and arsenic (As) was identified in various environmental media. Several potentially harmful elements, including As, cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se), were quantified in blood, urine, hair, and nails (toe and finger) from a group of individuals living near the Panasqueira Mine who were environmentally and occupationally exposed. A group with similar demographic characteristics without known exposure to mining activities was also compared. Genotoxicity was evaluated by means of T-cell receptor (TCR) mutation assay, and percentages of different lymphocyte subsets were selected as immunotoxicity biomarkers. Inductively coupled plasma–mass spectrometry (ICP-MS) and inductively coupled plasma–atomic emission spectrometry (ICP-AES) analysis showed elevated levels of As, Cd, Cr, Mn, and Pb in all biological samples taken from populations living close to the mine compared to controls. Genotoxic and immunotoxic differences were also observed. The results provide evidence of an elevated potential risk to the health of populations, with environmental and occupational exposures resulting from mining activities. Further, the results emphasize the need to implement preventive measures, remediation, and rehabilitation plans for the region.


Biomedicine & Pharmacotherapy | 2014

Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro

Monica C. Botelho; Carla Costa; Susana Pinho e Silva; Solange Costa; Alok Dhawan; Paula A. Oliveira; João Paulo Teixeira

Manufacturing or using nanomaterials may result in exposure of workers to nanoparticles. Potential routes of exposure include skin, lung and gastrointestinal tract. The lack of health-based standards for nanomaterials combined with their increasing use in many different workplaces and products emphasize the need for a reliable temporary risk assessment tool. Therefore, the aim of this work was to explore the effects of different doses of titanium dioxide nanoparticles on human gastric epithelial cells in vitro. We analyzed proliferation by MTT assay, apoptosis by Tunel, migration by injury assay, oxidative stress by determining GSH/GSSG ratio and DNA damage by Comet assay on nanoparticle-treated AGS human gastric epithelial cell line in comparison to controls. We show and discuss the tumor-like phenotypes of nanoparticles-exposed AGS cells in vitro, as increased proliferation and decreased apoptosis. Our results demonstrate for the first time that nanoparticles induce tumor-like phenotypes in human gastric epithelial cells.

Collaboration


Dive into the Solange Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge