Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soledad Matus is active.

Publication


Featured researches published by Soledad Matus.


Genes & Development | 2009

XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy

Claudio Hetz; Peter Thielen; Soledad Matus; Melissa Nassif; Felipe A. Court; Roberta Kiffin; Gabriela Martínez; Ana Maria Cuervo; Robert H. Brown; Laurie H. Glimcher

Mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS). Recent evidence implicates adaptive responses to endoplasmic reticulum (ER) stress in the disease process via a pathway known as the unfolded protein response (UPR). Here, we investigated the contribution to fALS of X-box-binding protein-1 (XBP-1), a key UPR transcription factor that regulates genes involved in protein folding and quality control. Despite expectations that XBP-1 deficiency would enhance the pathogenesis of mutant SOD1, we observed a dramatic decrease in its toxicity due to an enhanced clearance of mutant SOD1 aggregates by macroautophagy, a cellular pathway involved in lysosome-mediated protein degradation. To validate these observations in vivo, we generated mutant SOD1 transgenic mice with specific deletion of XBP-1 in the nervous system. XBP-1-deficient mice were more resistant to developing disease, correlating with increased levels of autophagy in motoneurons and reduced accumulation of mutant SOD1 aggregates in the spinal cord. Post-mortem spinal cord samples from patients with sporadic ALS and fALS displayed a marked activation of both the UPR and autophagy. Our results reveal a new function of XBP-1 in the control of autophagy and indicate critical cross-talk between these two signaling pathways that can provide protection against neurodegeneration.


Current Opinion in Cell Biology | 2011

Protein folding stress in neurodegenerative diseases: a glimpse into the ER.

Soledad Matus; Laurie H. Glimcher; Claudio Hetz

Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.


Autophagy | 2013

Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons

Karen Castillo; Melissa Nassif; Vicente Valenzuela; Fabiola Rojas; Soledad Matus; Gabriela Mercado; Felipe A. Court; Brigitte van Zundert; Claudio Hetz

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with no current effective treatment. Accumulation of abnormal protein inclusions containing SOD1, TARDBP, FUS, among other proteins, is a pathological hallmark of ALS. Autophagy is the major degradation pathway involved in the clearance of damaged organelles and protein aggregates. Although autophagy has been shown to efficiently degrade ALS-linked mutant protein in cell culture models, several studies suggest that autophagy impairment may also contribute to disease pathogenesis. In this report, we tested the potential use of trehalose, a disaccharide that induces MTOR-independent autophagy, in the development of experimental ALS. Administration of trehalose to mutant SOD1 transgenic mice significantly prolonged life span and attenuated the progression of disease signs. These effects were associated with decreased accumulation of SOD1 aggregates and enhanced motoneuron survival. The protective effects of trehalose were associated with increased autophagy levels in motoneurons. Cell culture experiments demonstrated that trehalose led to mutant SOD1 degradation by autophagy in NSC34 motoneuron cells and also protected primary motoneurons against the toxicity of conditioned media from mutant SOD1 transgenic astrocytes. At the mechanistic level, trehalose treatment led to a significant upregulation in the expression of key autophagy-related genes at the mRNA level including Lc3, Becn1, Sqstm1 and Atg5. Consistent with these changes, trehalose administration enhanced the nuclear translocation of FOXO1, an important transcription factor involved in the activation of autophagy in neurons. This study suggests a potential use of trehalose and enhancers of MTOR-independent autophagy for the treatment of ALS.


Current Molecular Medicine | 2008

The Stress Rheostat: An Interplay Between the Unfolded Protein Response (UPR) and Autophagy in Neurodegeneration

Soledad Matus; Fernanda Lisbona; Mauricio Torres; Cristian Leon; Peter Thielen; Claudio Hetz

The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under conditions of endoplasmic reticulum (ER) stress. The UPR controls diverse processes such as protein folding, secretion, ER biogenesis, protein quality control and macroautophagy. Occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation, including Amyotrophic lateral sclerosis, Prion-related disorders, and conditions such as Parkinsons, Huntingtons, and Alzheimers disease. Strong correlations are observed between disease progression, accumulation of protein aggregates, and induction of the UPR in animal and in vitro models of neurodegeneration. In addition, the first reports are available describing the engagement of ER stress responses in brain post-mortem samples from human patients. Despite such findings, the role of the UPR in the central nervous system has not been addressed directly and its contribution to neurodegeneration remains speculative. Recently, however, pharmacological manipulation of ER stress and autophagy - a stress pathway modulated by the UPR - using chemical chaperones and autophagy activators has shown therapeutic benefits by attenuating protein misfolding in models of neurodegenerative disease. The most recent evidence addressing the role of the UPR and ER stress in neurodegenerative disorders is reviewed here, along with therapeutic strategies to alleviate ER stress in a disease context.


Trends in Pharmacological Sciences | 2014

Targeting autophagy in neurodegenerative diseases.

René L. Vidal; Soledad Matus; Leslie Bargsted; Claudio Hetz

The most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process. Thus, a complex scenario is emerging where autophagy may play a dual role in neurodegenerative diseases by causing the downstream effect of promoting the degradation of misfolded proteins and an upstream effect where its deregulation perturbs global proteostasis, contributing to disease progression. Challenges in the future development of therapeutic strategies to target the autophagy pathway are discussed.


Cell Death and Disease | 2012

Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis

Sanjeev Gupta; Danielle E. Read; A Deepti; Karen Cawley; Ananya Gupta; Deepu Oommen; Tom Verfaillie; Soledad Matus; M A Smith; Justin L. Mott; Patrizia Agostinis; Claudio Hetz; Afshin Samali

Activation of the unfolded protein response sensor PKR-like endoplasmic reticulum kinase (Perk) attenuates endoplasmic reticulum (ER) stress levels. Conversantly, if the damage is too severe and ER function cannot be restored, this signaling branch triggers apoptosis. Bcl-2 homology 3-only family member Bim is essential for ER stress-induced apoptosis. However, the regulatory mechanisms controlling Bim activation under ER stress conditions are not well understood. Here, we show that downregulation of the miR-106b-25 cluster contributes to ER stress-induced apoptosis and the upregulation of Bim. Hypericin-mediated photo-oxidative ER damage induced Perk-dependent cell death and led to a significant decrease in the levels of miRNAs belonging to miR-106b-25 cluster in wild-type (WT) but not in Perk−/− MEFs. Further, we show that expression of miR-106b-25 and Mcm-7 (host gene of miR-106b-25) is co-regulated through the transcription factors Atf4 (activating transcription factor 4) and Nrf2 (nuclear factor-erythroid-2-related factor 2). ER stress increased the activity of WT Bim 3′UTR (untranslated region) construct but not the miR-106b-25 recognition site-mutated Bim 3′UTR construct. Overexpression of miR-106b-25 cluster inhibits ER stress-induced cell death in WT but did not confer any further protection in Bim-knockdown cells. Further, we show downregulation in the levels of miR-106b-25 cluster in the symptomatic SOD1G86R transgenic mice. Our results suggest a molecular mechanism whereby repression of miR-106b-25 cluster has an important role in ER stress-mediated increase in Bim and apoptosis.


Antioxidants & Redox Signaling | 2010

Amyotrophic Lateral Sclerosis Pathogenesis: A Journey Through the Secretory Pathway

Melissa Nassif; Soledad Matus; Karen Castillo; Claudio Hetz

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motoneuron degenerative disease characterized by the selective loss of motoneurons in the spinal ventral horn, most brainstem nuclei, and the cerebral cortex. Although approximately 90% of ALS cases are sporadic (sALS), analyses of familial ALS (fALS)-causative genes have generated relevant insight into molecular events involved in the pathology. Here we overview an emerging concept indicating the occurrence of secretory pathway stress in the disease process. These alterations include a failure in the protein folding machinery at the endoplasmic reticulum (ER), engagement of the unfolded protein response (UPR), modifications of the Golgi apparatus network, impaired vesicular trafficking, inhibition of protein quality control mechanisms, oxidative damage to ER proteins, and sustained activation of degradative pathways such as autophagy. A common feature predicted for most of these alterations is abnormal protein homeostasis associated with the accumulation of misfolded proteins at the ER, possibly leading to chronic ER stress and neuronal dysfunction. Signs of ER stress are observed even during presymptomatic stages in fALS mouse models, and pharmacological strategies to alleviate protein misfolding slow disease progression. Because the secretory pathway stress occurs in both sALS and several forms of fALS, it may offer a unique common target for possible therapeutic strategies to treat this devastating disease.


Autophagy | 2014

Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis

Melissa Nassif; Vicente Valenzuela; Diego Rojas-Rivera; René Vidal; Soledad Matus; Karen Castillo; Yerko Leighton Fuentealba; Guido Kroemer; Beth Levine; Claudio Hetz

Pharmacological activation of autophagy is becoming an attractive strategy to induce the selective degradation of aggregate-prone proteins. Recent evidence also suggests that autophagy impairment may underlie the pathogenesis of several neurodegenerative diseases. Mutations in the gene encoding SOD1 (superoxide disumutase 1) trigger familial amyotrophic lateral sclerosis (ALS), inducing its misfolding and aggregation and the progressive loss of motoneurons. It is still under debate whether autophagy has a protective or detrimental role in ALS. Here we evaluate the impact of BECN1/Beclin 1, an essential autophagy regulator, in ALS. BECN1 levels were upregulated in both cells and animals expressing mutant SOD1. To evaluate the impact of BECN1 to the pathogenesis of ALS in vivo, we generated mutant SOD1 transgenic mice heterozygous for Becn1. We observed an unexpected increase in life span of mutant SOD1 transgenic mice haploinsufficient for Becn1 compared with littermate control animals. These effects were accompanied by enhanced accumulation of SQSTM1/p62 and reduced levels of LC3-II, and an altered equilibrium between monomeric and oligomeric mutant SOD1 species in the spinal cord. At the molecular level, we detected an abnormal interaction of mutant SOD1 with the BECN1-BCL2L1 complex that may impact autophagy stimulation. Our data support a dual role of BECN1 in ALS and depict a complex scenario in terms of predicting the effects of manipulating autophagy in a disease context.


Cell Death and Disease | 2013

Measurement of autophagy flux in the nervous system in vivo.

Karen Castillo; Vicente Valenzuela; Soledad Matus; Melissa Nassif; Maritza Oñate; Yerko Leighton Fuentealba; Gonzalo Encina; Thergiory Irrazabal; Geoffrey Parsons; Felipe A. Court; Bernard L. Schneider; Donna Armentano; Claudio Hetz

Accurate methods to measure autophagic activity in vivo in neurons are not available, and most of the studies are based on correlative and static measurements of autophagy markers, leading to conflicting interpretations. Autophagy is an essential homeostatic process involved in the degradation of diverse cellular components including organelles and protein aggregates. Autophagy impairment is emerging as a relevant factor driving neurodegeneration in many diseases. Moreover, strategies to modulate autophagy have been shown to provide protection against neurodegeneration. Here we describe a novel and simple strategy to express an autophagy flux reporter in the nervous system of adult animals by the intraventricular delivery of adeno-associated viruses (AAV) into newborn mice. Using this approach we efficiently expressed a monomeric tandem mCherry-GFP-LC3 construct in neurons of the peripheral and central nervous system, allowing the measurement of autophagy activity in pharmacological and disease settings.


Autophagy | 2012

Hormesis: protecting neurons against cellular stress in Parkinson disease.

Soledad Matus; Karen Castillo; Claudio Hetz

Protein folding stress is a salient feature of the most frequent neurodegenerative diseases. Although the accumulation of abnormally folded proteins is a well-characterized event underlying the pathology, the way cells respond to this phenomenon is not well understood. Signs of endoplasmic reticulum (ER) stress are a common marker of neurodegeneration in many diseases, which may represent two contrasting processes: cell protection events due to activation of adaptive programs, or a chronic stress state that culminates in apoptosis to eliminate irreversibly injured cells. Autophagy has been proposed as a protective mechanism to overcome neurodegeneration that is also modulated by ER stress. In this issue of autophagy Bertrand Mollereau’s group provides novel evidence indicating that engagement of nonharmful levels of ER stress protects against experimental Parkinson disease. At the mechanistic level, a homeostatic crosstalk between ER stress signaling and the autophagy pathway was proposed to mediate the therapeutic effects. This study, together with recent findings, supports the involvement of a “hormesis mechanism” to handle degeneration through preconditioning mediated by a dynamic balance between ER stress and autophagy. The implications for aging and future therapeutic development are discussed.

Collaboration


Dive into the Soledad Matus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge