Solen Lozach
IFREMER
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Solen Lozach.
Applied and Environmental Microbiology | 2007
Michele Gourmelon; Marie Paule Caprais; Raphaël Ségura; Cecile Le Mennec; Solen Lozach; Jean Yves Piriou; Alain Rincé
ABSTRACT In order to identify the origin of the fecal contamination observed in French estuaries, two library-independent microbial source tracking (MST) methods were selected: (i) Bacteroidales host-specific 16S rRNA gene markers and (ii) F-specific RNA bacteriophage genotyping. The specificity of the Bacteroidales markers was evaluated on human and animal (bovine, pig, sheep, and bird) feces. Two human-specific markers (HF183 and HF134), one ruminant-specific marker (CF193′), and one pig-specific marker (PF163) showed a high level of specificity (>90%). However, the data suggest that the proposed ruminant-specific CF128 marker would be better described as an animal marker, as it was observed in all bovine and sheep feces and 96% of pig feces. F RNA bacteriophages were detected in only 21% of individual fecal samples tested, in 60% of pig slurries, but in all sewage samples. Most detected F RNA bacteriophages were from genotypes II and III in sewage samples and from genotypes I and IV in bovine, pig, and bird feces and from pig slurries. Both MST methods were applied to 28 water samples collected from three watersheds at different times. Classification of water samples as subject to human, animal, or mixed fecal contamination was more frequent when using Bacteroidales markers (82.1% of water samples) than by bacteriophage genotyping (50%). The ability to classify a water sample increased with increasing Escherichia coli or enterococcus concentration. For the samples that could be classified by bacteriophage genotyping, 78% agreed with the classification obtained from Bacteroidales markers.
Water Research | 2013
Blythe A. Layton; Yiping Cao; Darcy L. Ebentier; Kaitlyn T. Hanley; Elisenda Ballesté; João Brandão; Muruleedhara N. Byappanahalli; Reagan R. Converse; Andreas H. Farnleitner; Jennifer Gentry-Shields; Maribeth L. Gidley; Michele Gourmelon; Chang-Soo Lee; Jiyoung Lee; Solen Lozach; Tania Madi; Wim G. Meijer; Rachel T. Noble; Lindsay Peed; Georg H. Reischer; Raquel Rodrigues; Joan B. Rose; Alexander Schriewer; Chris Sinigalliano; Sangeetha Srinivasan; Jill R. Stewart; Laurie C. Van De Werfhorst; Dan Wang; Richard L. Whitman; Stefan Wuertz
A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman(®), HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman(®) was found to be the most effective marker of human fecal contamination in this California-based study.
Journal of Applied Microbiology | 2006
Michele Gourmelon; M.P. Montet; Solen Lozach; C. Le Mennec; Monique Pommepuy; L. Beutin; C. Vernozy-Rozand
Aims: This study was carried out to evaluate the presence of Shiga toxin‐producing Escherichia coli (STEC) and E. coli O157:H7 in shellfish from French coastal environments.
Applied and Environmental Microbiology | 2007
François Coutard; Solen Lozach; Monique Pommepuy; Dominique Hervio-Heath
ABSTRACT A real-time reverse transcription-PCR method was developed to determine whether the recovery of culturability of viable but nonculturable (VBNC) Vibrio parahaemolyticus induced the expression of virulence genes coding for the thermostable direct hemolysin and for type III secretion system 2 (TTSS2). The culturability of clinical strain Vp5 of V. parahaemolyticus in artificial seawater at 4°C was monitored, and the VBNC state was obtained. One day after entry into the VBNC state, temperature upshifts to 20 and 37°C allowed the recovery of culturability. Standard curves for the relative quantification of expression of the housekeeping genes rpoS, pvsA, fur, and pvuA; the tdh2 gene; and the TTSS2 genes (VPA1354, VPA1346, and VPA1342) were established. The levels of expression of the pvsA and pvuA genes were stable and were used to normalize the levels of expression of the other genes. No transcriptional induction of the selected virulence genes under the temperature conditions used to recover the culturability of the VBNC bacteria was observed. The study results demonstrate that the recovery of culturability of VBNC cells of pathogenic V. parahaemolyticus is restricted to regrowth, without correlation with the induction of virulence gene expression. Disease induction would depend mainly on host-pathogen interactions that allow the expression of the virulence genes. This is the first time that the use of mRNA to detect viable cells was evaluated by computing the half-lives of multiple mRNA species under conditions inducing the VBNC state.
Environmental Microbiology Reports | 2010
Julie Deter; Solen Lozach; A. Derrien; Antoine Veron; Jaufrey Chollet; Dominique Hervio-Heath
The present study focused on the isolation of culturable bacteria from mussels and sea water to identify Vibrionaceae potentially pathogenic for humans. Three sites located on the French Atlantic coast were monitored monthly (twice each month during summer) for 1 year. Environmental parameters were surveyed (water temperature, salinity, turbidity, chlorophyll a) and bacteria were detected by culture and identified by API 20E(®) systems (BioMérieux) and PCR. A total of seven species were detected (Grimontia hollisae, Photobacterium damselae, Vibrio alginolyticus, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus) and species diversity was higher at the end of summer. Surprisingly, V. cholerae non-O1/non-O139 was detected in spring. No site effect was detected. Using Sørensen similarity indices and statistical analyses, we showed that chlorophyll a had a significant influence on the bacterial community detected in mussels and assemblages were more similar to one another when chlorophyll a values were above 20 µg l(-1) . No significant effect of any parameter was found on the community detected in water samples. Such surveys are essential for the understanding of sanitary crises and detection of emerging pathogens.
Marine Pollution Bulletin | 2013
Aourell Mauffret; Sophie Mieszkin; Mael Morizur; Yustian Rovi Alfiansah; Solen Lozach; Michele Gourmelon
We assessed the capacity of real-time PCR markers to identify the origin of contamination in shellfish. Oyster, cockles or clams were either contaminated with fecal materials and host-associated markers designed from Bacteroidales or Catellicoccus marimammalium 16S RNA genes were extracted from their intravalvular liquid, digestive tissues or shellfish flesh. Extraction of bacterial DNA from the oyster intravalvular liquid with FastDNA spin kit for soil enabled the selected markers to be quantified in 100% of artificially contaminated samples, and the source of contamination to be identified in 13 out of 38 naturally contaminated batches from European Class B and Class C areas. However, this protocol did not enable the origin of the contamination to be identified in cockle or clam samples. Although results are promising for extracts from intravalvular liquid in oyster, it is unlikely that a single protocol could be the best across all bacterial markers and types of shellfish.
Frontiers in Microbiology | 2018
Alain Rincé; Charlotte Balière; Dominique Hervio-Heath; Joëlle Cozien; Solen Lozach; Sylvain Parnaudeau; Françoise S. Le Guyader; Simon Le Hello; Jean-Christophe Giard; Nicolas Sauvageot; Abdellah Benachour; Sofia Strubbia; Michele Gourmelon
During a 2-year study, the presence of human pathogenic bacteria and noroviruses was investigated in shellfish, seawater and/or surface sediments collected from three French coastal shellfish-harvesting areas as well as in freshwaters from the corresponding upstream catchments. Bacteria isolated from these samples were further analyzed. Escherichia coli isolates classified into the phylogenetic groups B2, or D and enterococci from Enterococcus faecalis and E. faecium species were tested for the presence of virulence genes and for antimicrobial susceptibility. Salmonella members were serotyped and the most abundant serovars (Typhimurium and its monophasic variants and Mbandaka) were genetically characterized by high discriminative subtyping methods. Campylobacter and Vibrio were identified at the species level, and haemolysin-producing Vibrio parahaemolyticus were searched by tdh- and trh- gene detection. Main results showed a low prevalence of Salmonella in shellfish samples where only members of S. Mbandaka were found. Campylobacter were more frequently isolated than Salmonella and a different distribution of Campylobacter species was observed in shellfish compared to rivers, strongly suggesting possible additional inputs of bacteria. Statistical associations between enteric bacteria, human noroviruses (HuNoVs) and concentration of fecal indicator bacteria revealed that the presence of Salmonella was correlated with that of Campylobacter jejuni and/or C. coli as well as to E. coli concentration. A positive correlation was also found between the presence of C. lari and the detection of HuNoVs. This study highlights the importance of simultaneous detection and characterization of enteric and marine pathogenic bacteria and human noroviruses not only in shellfish but also in catchment waters for a hazard assessment associated with microbial contamination of shellfish.
Water Research | 2013
Darcy L. Ebentier; Kaitlyn T. Hanley; Yiping Cao; Brian D. Badgley; Alexandria B. Boehm; Jared S. Ervin; Kelly D. Goodwin; Michele Gourmelon; John F. Griffith; Patricia A. Holden; Catherine A. Kelty; Solen Lozach; Charles D. McGee; Lindsay Peed; Meredith Raith; Hodon Ryu; Michael J. Sadowsky; Elizabeth A. Scott; Jorge W. Santo Domingo; Alexander Schriewer; Christopher D. Sinigalliano; Orin C. Shanks; Laurie C. Van De Werfhorst; Dan Wang; Stefan Wuertz; Jennifer A. Jay
Science of The Total Environment | 2018
Emilie Jardé; Laurent Jeanneau; Loïc Harrault; Emmanuelle Quenot; O. Solecki; Patrice Petitjean; Solen Lozach; Julien Cheve; Michele Gourmelon
Bulletin Epidémiologique | 2005
Dominique Hervio Heath; Mohamed Zidane; Jean-Claude Le Saux; Solen Lozach; V Vaillant; Soizick Le Guyader; Monique Pommepuy